Gelöste Aufgaben/Kw98: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
Zeile 32: | Zeile 32: | ||
<!--------------------------------------------------------------------------------> | |||
{{MyCodeBlock|title=Header | {{MyCodeBlock|title=Header | ||
|text= | |text= | ||
Diese Aufgabe mit der [[Randwertprobleme/Methoden zur Lösung von Randwertproblemen/Finite Elemente Methode|Methode der Finiten Elemente]] in [[Gelöste Aufgaben/Kw96|KW96]] gelöst. | |||
|code= | |code= | ||
<syntaxhighlight lang="lisp" line start=1> | <syntaxhighlight lang="lisp" line start=1> | ||
1 | /*******************************************************/ | ||
/* MAXIMA script */ | |||
/* version: wxMaxima 15.08.2 */ | |||
/* author: Andreas Baumgart */ | |||
/* last updated: 2017-09-06 */ | |||
/* ref: TM-C, Labor 1 */ | |||
/* description */ | |||
/* */ | |||
/*******************************************************/ | |||
</syntaxhighlight> | </syntaxhighlight> | ||
}} | }} | ||
<!--------------------------------------------------------------------------------> | <!--------------------------------------------------------------------------------> | ||
{{MyCodeBlock|title=Declarations | {{MyCodeBlock|title=Declarations | ||
|text= | |text= | ||
Wir definieren die Parameter | |||
::<math>\begin{array}{l}q_{A}=\frac{3\cdot kN}{m},\\l_{1}=\frac{7\cdot m}{10}, \\EI_{1}=33600\; N\; {{m}^{2}},\\{{l}_{2}}=\frac{21\; m}{40},\\EI_{2}=16800\; N\;{{m}^{2}},\\{{K}_{A}}=96\;kN\; m,\\{{k}_{C}}=\frac{22\;kN}{m},\\{{k}_{B}}=\frac{98\;kN}{m},\\{{q}_{B}}=\frac{12\; N}{mm},\\{{M}_{B}}=1470\; Nm\end{array}</math>. | |||
und die Formfunktionen für die Streckenlast | |||
::<math>\begin{array}{l}{{\phi}_{0}}\left( \xi\right) :=1-\xi\\{{\phi}_{1}}\left( \xi\right) :=\xi\end{array}</math>. | |||
|code= | |code= | ||
<syntaxhighlight lang="lisp" line start=1> | <syntaxhighlight lang="lisp" line start=1> | ||
1 | /* system parameter */ | ||
units : [mm = m/1000, cm = m/100]; | |||
params : [q[A]=3*N/mm, l[1]=700*mm, EI[1] = 2.1*10^11*N/m^2 * 3*cm*(4*cm)^3/12]; | |||
simple : [l[2] = 3/4*l[1], EI[2] = EI[1]/2, | |||
K[A]=2*EI[1]/l[1], k[C] = 512/229*EI[1]/l[1]^3, k[B] = EI[1]/l[1]^3, | |||
q[B] = 4*q[A], M[B] = q[A]*l[1]^2]; | |||
params : append(params,makelist(lhs(simple[i])=subst(params,rhs(simple[i])),i,1,length(simple))); | |||
params : subst(units,params); | |||
/* form - functions */ | |||
phi[0](xi) := 1 - xi; | |||
phi[1](xi) := xi; | |||
</syntaxhighlight> | </syntaxhighlight> | ||
}} | }} | ||
== | <!--------------------------------------------------------------------------------> | ||
{{MyCodeBlock|title=Formfunctions | |||
|text= | |||
In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung | In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung | ||
<math>E\; I_i w_i^{IV}(x_i) = q(x_i) ,\;\; i=\{1,2\} \text{ mit } q(x_i) = q_0\cdot\phi_0(\xi) + q_1\cdot\phi_1(\xi)</math>, | ::<math>E\; I_i w_i^{IV}(x_i) = q(x_i) ,\;\; i=\{1,2\} \text{ mit } q(x_i) = q_0\cdot\phi_0(\xi) + q_1\cdot\phi_1(\xi)</math>, | ||
die wir durch Integration lösen und dann bereichsweise anpassen. | die wir durch Integration lösen und dann bereichsweise anpassen. | ||
Zeile 68: | Zeile 91: | ||
Die allgemeine Lösung ist mit | Die allgemeine Lösung ist mit | ||
<math>\displaystyle \phi_i(x) = \frac{dw(x)}{dx}</math> | ::<math>\displaystyle \phi_i(x) = \frac{dw(x)}{dx}</math> | ||
... für Bereich I: | ... für Bereich I: | ||
<math>\begin{array}{l} {{w}_{1}}\left( x\right) :=\frac{120\cdot {{l}_{1}}\cdot {{C}_{1,0}}+120\cdot {{l}_{1}}\cdot {{C}_{1,1}}\cdot x+60\cdot {{l}_{1}}\cdot {{C}_{1,2}}\cdot {{x}^{2}}+20\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot {{x}^{3}}+5\cdot {{l}_{1}}\cdot {{x}^{4}}\cdot {{q}_{A}}+{{x}^{5}}\cdot \left( {{q}_{B}}-{{q}_{A}}\right) }{120\cdot {{l}_{1}}\cdot {{\mathit{EI}}_{1}}}\\ {{\phi}_{1}}\left( x\right) :=\frac{120\cdot {{l}_{1}}\cdot {{C}_{1,1}}+120\cdot {{l}_{1}}\cdot {{C}_{1,2}}\cdot x+60\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot {{x}^{2}}+20\cdot {{l}_{1}}\cdot {{x}^{3}}\cdot {{q}_{A}}+5\cdot {{x}^{4}}\cdot \left( {{q}_{B}}-{{q}_{A}}\right) }{120\cdot {{l}_{1}}\cdot {{\mathit{EI}}_{1}}}\\ {{M}_{1}}\left( x\right) :=-\frac{120\cdot {{l}_{1}}\cdot {{C}_{1,2}}+120\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot x+60\cdot {{l}_{1}}\cdot {{x}^{2}}\cdot {{q}_{A}}+20\cdot {{x}^{3}}\cdot \left( {{q}_{B}}-{{q}_{A}}\right) }{120\cdot {{l}_{1}}}\\ {{Q}_{1}}\left( x\right) :=-\frac{120\cdot {{l}_{1}}\cdot {{C}_{1,3}}+120\cdot {{l}_{1}}\cdot x\cdot {{q}_{A}}+60\cdot {{x}^{2}}\cdot \left( {{q}_{B}}-{{q}_{A}}\right) }{120\cdot {{l}_{1}}} \end{array}</math> | ::<math>\begin{array}{l} {{w}_{1}}\left( x\right) :=\frac{120\cdot {{l}_{1}}\cdot {{C}_{1,0}}+120\cdot {{l}_{1}}\cdot {{C}_{1,1}}\cdot x+60\cdot {{l}_{1}}\cdot {{C}_{1,2}}\cdot {{x}^{2}}+20\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot {{x}^{3}}+5\cdot {{l}_{1}}\cdot {{x}^{4}}\cdot {{q}_{A}}+{{x}^{5}}\cdot \left( {{q}_{B}}-{{q}_{A}}\right) }{120\cdot {{l}_{1}}\cdot {{\mathit{EI}}_{1}}}\\ {{\phi}_{1}}\left( x\right) :=\frac{120\cdot {{l}_{1}}\cdot {{C}_{1,1}}+120\cdot {{l}_{1}}\cdot {{C}_{1,2}}\cdot x+60\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot {{x}^{2}}+20\cdot {{l}_{1}}\cdot {{x}^{3}}\cdot {{q}_{A}}+5\cdot {{x}^{4}}\cdot \left( {{q}_{B}}-{{q}_{A}}\right) }{120\cdot {{l}_{1}}\cdot {{\mathit{EI}}_{1}}}\\ {{M}_{1}}\left( x\right) :=-\frac{120\cdot {{l}_{1}}\cdot {{C}_{1,2}}+120\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot x+60\cdot {{l}_{1}}\cdot {{x}^{2}}\cdot {{q}_{A}}+20\cdot {{x}^{3}}\cdot \left( {{q}_{B}}-{{q}_{A}}\right) }{120\cdot {{l}_{1}}}\\ {{Q}_{1}}\left( x\right) :=-\frac{120\cdot {{l}_{1}}\cdot {{C}_{1,3}}+120\cdot {{l}_{1}}\cdot x\cdot {{q}_{A}}+60\cdot {{x}^{2}}\cdot \left( {{q}_{B}}-{{q}_{A}}\right) }{120\cdot {{l}_{1}}} \end{array}</math> | ||
... für Bereich II: | ... für Bereich II: | ||
<math>\begin{array}{l} {{w}_{2}}\left( x\right) :=\frac{120\cdot {{l}_{2}}\cdot {{C}_{2,0}}+120\cdot {{l}_{2}}\cdot {{C}_{2,1}}\cdot x+60\cdot {{l}_{2}}\cdot {{C}_{2,2}}\cdot {{x}^{2}}+20\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot {{x}^{3}}}{120\cdot {{l}_{2}}\cdot {{\mathit{EI}}_{2}}}\\ {{\phi}_{2}}\left( x\right) :=\frac{120\cdot {{l}_{2}}\cdot {{C}_{2,1}}+120\cdot {{l}_{2}}\cdot {{C}_{2,2}}\cdot x+60\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot {{x}^{2}}}{120\cdot {{l}_{2}}\cdot {{\mathit{EI}}_{2}}}\\ {{M}_{2}}\left( x\right) :=-\frac{120\cdot {{l}_{2}}\cdot {{C}_{2,2}}+120\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot x}{120\cdot {{l}_{2}}}\\ {{Q}_{2}}\left( x\right) :=-{{C}_{2,3}} \end{array}</math> | ::<math>\begin{array}{l} {{w}_{2}}\left( x\right) :=\frac{120\cdot {{l}_{2}}\cdot {{C}_{2,0}}+120\cdot {{l}_{2}}\cdot {{C}_{2,1}}\cdot x+60\cdot {{l}_{2}}\cdot {{C}_{2,2}}\cdot {{x}^{2}}+20\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot {{x}^{3}}}{120\cdot {{l}_{2}}\cdot {{\mathit{EI}}_{2}}}\\ {{\phi}_{2}}\left( x\right) :=\frac{120\cdot {{l}_{2}}\cdot {{C}_{2,1}}+120\cdot {{l}_{2}}\cdot {{C}_{2,2}}\cdot x+60\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot {{x}^{2}}}{120\cdot {{l}_{2}}\cdot {{\mathit{EI}}_{2}}}\\ {{M}_{2}}\left( x\right) :=-\frac{120\cdot {{l}_{2}}\cdot {{C}_{2,2}}+120\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot x}{120\cdot {{l}_{2}}}\\ {{Q}_{2}}\left( x\right) :=-{{C}_{2,3}} \end{array}</math>. | ||
|code= | |code= | ||
<syntaxhighlight lang="lisp" line start=1> | <syntaxhighlight lang="lisp" line start=1> | ||
1 | /* solve ....*/ | ||
dgl : EI[i]*diff(w(x),x,4) = q[0]*phi[0](x/l[i]) + q[1]*phi[1](x/l[i]); | |||
/* generic solution */ | |||
displ : solve(integrate(integrate(integrate(integrate(dgl,x),x),x),x),w(x)); | |||
sections: [[i=1, %c4=C[1,0], %c3=C[1,1], %c2=C[1,2], %c1=C[1,3], q[0]=q[A], q[1]=q[B]], | |||
[i=2, %c4=C[2,0], %c3=C[2,1], %c2=C[2,2], %c1=C[2,3], q[0]= 0 , q[1]= 0 ]]; | |||
/* section I */ | |||
define( w[1](x), subst(sections[1],subst(displ,w(x)))); | |||
define(Phi[1](x), diff(w[1](x),x )); | |||
define( M[1](x), -EI[1]*diff(w[1](x),x,2)); | |||
define( Q[1](x), -EI[1]*diff(w[1](x),x,3)); | |||
/* section II */ | |||
define( w[2](x), subst(sections[2],subst(displ,w(x)))); | |||
define(Phi[2](x), diff(w[2](x),x )); | |||
define( M[2](x), -EI[2]*diff(w[2](x),x,2)); | |||
define( Q[2](x), -EI[2]*diff(w[2](x),x,3)); | |||
</syntaxhighlight> | </syntaxhighlight> | ||
}} | }} | ||
== | <!--------------------------------------------------------------------------------> | ||
{{MyCodeBlock|title=Boundary Conditions | |||
|text= | |||
Für die 2*4 = 8 Integrationskonstanten | Für die 2*4 = 8 Integrationskonstanten | ||
<math>\left[ C_{1,0},C_{1,1},C_{1,2},C_{1,3},C_{2,0},C_{2,1},C_{2,2},C_{2,3}\right]</math> | ::<math>\left[ C_{1,0},C_{1,1},C_{1,2},C_{1,3},C_{2,0},C_{2,1},C_{2,2},C_{2,3}\right]</math> | ||
suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen. | suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen. | ||
Zeile 112: | Zeile 150: | ||
<tr><td>[[Datei:Kw98-11B.png|rahmenlos|alternativtext=|162x162px]] | <tr><td>[[Datei:Kw98-11B.png|rahmenlos|alternativtext=|162x162px]] | ||
</td><td>''Geometrische Randbedingungen'' | </td><td>''Geometrische Randbedingungen'' | ||
# <math>w_1(\ell_1)=w_2(\ell_1)</math> | #<math>w_1(\ell_1)=w_2(\ell_1)</math> | ||
# <math>\phi_1(\ell_1) = \phi_2(\ell_1)</math> | #<math>\phi_1(\ell_1) = \phi_2(\ell_1)</math> | ||
''Kraft- und Momenten-Randbedingungen'' | ''Kraft- und Momenten-Randbedingungen'' | ||
Zeile 136: | Zeile 174: | ||
Und das liefert das Gleichungssystem aus 8 Gleichungen | Und das liefert das Gleichungssystem aus 8 Gleichungen | ||
<math>\begin{pmatrix}\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}=0\\ \frac{{{C}_{1,1}}\cdot {{K}_{A}}}{{{\mathit{EI}}_{1}}}-{{C}_{1,2}}=0\\ \frac{{{\ell}_{1}^{4}}\cdot {{q}_{B}}}{120\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{4}}\cdot {{q}_{A}}}{30\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{3}}\cdot {{C}_{1,3}}}{6\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{2}}\cdot {{C}_{1,2}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}}\cdot {{C}_{1,1}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}=\frac{{{C}_{2,0}}}{{{\mathit{EI}}_{2}}}\\ \frac{{{\ell}_{1}^{3}}\cdot {{q}_{B}}}{24\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{3}}\cdot {{q}_{A}}}{8\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{2}}\cdot {{C}_{1,3}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}}\cdot {{C}_{1,2}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,1}}}{{{\mathit{EI}}_{1}}}=\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}\\ \frac{{{\ell}_{1}}\cdot {{q}_{B}}}{2}-\frac{{{C}_{2,0}}\cdot {{k}_{B}}}{{{\mathit{EI}}_{2}}}+\frac{{{\ell}_{1}}\cdot {{q}_{A}}}{2}-{{C}_{2,3}}+{{C}_{1,3}}=0\\ -{{M}_{B}}+\frac{{{\ell}_{1}^{2}}\cdot {{q}_{B}}}{6}+\frac{{{\ell}_{1}^{2}}\cdot {{q}_{A}}}{3}-{{C}_{2,2}}+{{\ell}_{1}}\cdot {{C}_{1,3}}+{{C}_{1,2}}=0\\ \frac{{{\ell}_{2}^{2}}\cdot {{C}_{2,3}}}{2\cdot {{\mathit{EI}}_{2}}}+\frac{{{\ell}_{2}}\cdot {{C}_{2,2}}}{{{\mathit{EI}}_{2}}}+\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}=0\\ -\frac{{{\ell}_{2}^{3}}\cdot {{C}_{2,3}}\cdot {{k}_{C}}}{6\cdot {{\mathit{EI}}_{2}}}-\frac{{{\ell}_{2}^{2}}\cdot {{C}_{2,2}}\cdot {{k}_{C}}}{2\cdot {{\mathit{EI}}_{2}}}-\frac{{{\ell}_{2}}\cdot {{C}_{2,1}}\cdot {{k}_{C}}}{{{\mathit{EI}}_{2}}}-\frac{{{C}_{2,0}}\cdot {{k}_{C}}}{{{\mathit{EI}}_{2}}}+{{C}_{2,3}}=0\end{pmatrix} | ::<math>\begin{pmatrix}\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}=0\\ \frac{{{C}_{1,1}}\cdot {{K}_{A}}}{{{\mathit{EI}}_{1}}}-{{C}_{1,2}}=0\\ \frac{{{\ell}_{1}^{4}}\cdot {{q}_{B}}}{120\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{4}}\cdot {{q}_{A}}}{30\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{3}}\cdot {{C}_{1,3}}}{6\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{2}}\cdot {{C}_{1,2}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}}\cdot {{C}_{1,1}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}=\frac{{{C}_{2,0}}}{{{\mathit{EI}}_{2}}}\\ \frac{{{\ell}_{1}^{3}}\cdot {{q}_{B}}}{24\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{3}}\cdot {{q}_{A}}}{8\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{2}}\cdot {{C}_{1,3}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}}\cdot {{C}_{1,2}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,1}}}{{{\mathit{EI}}_{1}}}=\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}\\ \frac{{{\ell}_{1}}\cdot {{q}_{B}}}{2}-\frac{{{C}_{2,0}}\cdot {{k}_{B}}}{{{\mathit{EI}}_{2}}}+\frac{{{\ell}_{1}}\cdot {{q}_{A}}}{2}-{{C}_{2,3}}+{{C}_{1,3}}=0\\ -{{M}_{B}}+\frac{{{\ell}_{1}^{2}}\cdot {{q}_{B}}}{6}+\frac{{{\ell}_{1}^{2}}\cdot {{q}_{A}}}{3}-{{C}_{2,2}}+{{\ell}_{1}}\cdot {{C}_{1,3}}+{{C}_{1,2}}=0\\ \frac{{{\ell}_{2}^{2}}\cdot {{C}_{2,3}}}{2\cdot {{\mathit{EI}}_{2}}}+\frac{{{\ell}_{2}}\cdot {{C}_{2,2}}}{{{\mathit{EI}}_{2}}}+\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}=0\\ -\frac{{{\ell}_{2}^{3}}\cdot {{C}_{2,3}}\cdot {{k}_{C}}}{6\cdot {{\mathit{EI}}_{2}}}-\frac{{{\ell}_{2}^{2}}\cdot {{C}_{2,2}}\cdot {{k}_{C}}}{2\cdot {{\mathit{EI}}_{2}}}-\frac{{{\ell}_{2}}\cdot {{C}_{2,1}}\cdot {{k}_{C}}}{{{\mathit{EI}}_{2}}}-\frac{{{C}_{2,0}}\cdot {{k}_{C}}}{{{\mathit{EI}}_{2}}}+{{C}_{2,3}}=0\end{pmatrix} | ||
</math> | </math> | ||
für die Integrationskonstanten. | für die Integrationskonstanten. | ||
|code= | |code= | ||
<syntaxhighlight lang="lisp" line start=1> | <syntaxhighlight lang="lisp" line start=1> |
Version vom 31. März 2021, 12:09 Uhr
Aufgabenstellung
Ein Stab ABC ist durch eine lineare veränderliche Streckenlast q mit den Eckwerten qA in A und qB in B sowie dem Moment MB in B belastet. Der Stab (E-Modul: E) besteht aus zwei Sektionen mit den Längen l1 bzw. l2 sowie den Flächenmomenten I1 bzw. I2. Der Stab ist in A durch ein gelenkiges Festlager, in C durch eine Schiebehülse gelagert, in B sind die beiden Sektionen fest miteinander verbunden. Die Feder in A ist eine Drehfester mit Steifigkeit KA, die Federn in B und C sind Translationsfedern mit den Steifigkeiten kB, kC.
Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken.
Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:
Lösung mit Maxima
Die Aufgabe ist ein klassisches Randwertproblem:
- zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehung
berschrieben wird. - Rand- und Übergangsbedingungen in den Punkten A, B, C
Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:
Rand A | Bereich I | Übergang B | Bereich II | Rand C |
---|---|---|---|---|
Header
Diese Aufgabe mit der Methode der Finiten Elemente in KW96 gelöst.
/*******************************************************/
/* MAXIMA script */
/* version: wxMaxima 15.08.2 */
/* author: Andreas Baumgart */
/* last updated: 2017-09-06 */
/* ref: TM-C, Labor 1 */
/* description */
/* */
/*******************************************************/
Declarations
Wir definieren die Parameter
- .
und die Formfunktionen für die Streckenlast
- .
/* system parameter */
units : [mm = m/1000, cm = m/100];
params : [q[A]=3*N/mm, l[1]=700*mm, EI[1] = 2.1*10^11*N/m^2 * 3*cm*(4*cm)^3/12];
simple : [l[2] = 3/4*l[1], EI[2] = EI[1]/2,
K[A]=2*EI[1]/l[1], k[C] = 512/229*EI[1]/l[1]^3, k[B] = EI[1]/l[1]^3,
q[B] = 4*q[A], M[B] = q[A]*l[1]^2];
params : append(params,makelist(lhs(simple[i])=subst(params,rhs(simple[i])),i,1,length(simple)));
params : subst(units,params);
/* form - functions */
phi[0](xi) := 1 - xi;
phi[1](xi) := xi;
Formfunctions
In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung
- ,
die wir durch Integration lösen und dann bereichsweise anpassen.
So gilt für Bereich II: q0 = 0 und q1 = 0.
Die allgemeine Lösung ist mit
... für Bereich I:
... für Bereich II:
- .
/* solve ....*/
dgl : EI[i]*diff(w(x),x,4) = q[0]*phi[0](x/l[i]) + q[1]*phi[1](x/l[i]);
/* generic solution */
displ : solve(integrate(integrate(integrate(integrate(dgl,x),x),x),x),w(x));
sections: [[i=1, %c4=C[1,0], %c3=C[1,1], %c2=C[1,2], %c1=C[1,3], q[0]=q[A], q[1]=q[B]],
[i=2, %c4=C[2,0], %c3=C[2,1], %c2=C[2,2], %c1=C[2,3], q[0]= 0 , q[1]= 0 ]];
/* section I */
define( w[1](x), subst(sections[1],subst(displ,w(x))));
define(Phi[1](x), diff(w[1](x),x ));
define( M[1](x), -EI[1]*diff(w[1](x),x,2));
define( Q[1](x), -EI[1]*diff(w[1](x),x,3));
/* section II */
define( w[2](x), subst(sections[2],subst(displ,w(x))));
define(Phi[2](x), diff(w[2](x),x ));
define( M[2](x), -EI[2]*diff(w[2](x),x,2));
define( Q[2](x), -EI[2]*diff(w[2](x),x,3));
Boundary Conditions
Für die 2*4 = 8 Integrationskonstanten
suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.
Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen.
Aus Rand "A"
Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Aus Übergang "B"
Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Aus Rand "C"
Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Und das liefert das Gleichungssystem aus 8 Gleichungen
für die Integrationskonstanten.
1+1
tmp
Das Gleichungssystem wollen wir als
schreiben, also
Die Matrix-Elemente sind für die Koeffizientenmatrix
und für die rechte Seite
Prepare for Solver
Text
1+1
tmp
Das Lösen des Gleichungssystems liefert
Solving
Text
1+1
tmp
Und die Ergebnisse können wir uns anschauen ...
... für w(x):
... für Φ(x):
... für M(x):
... für Q(x):
Post-Processing
Text
1+1
Links
- ...
Literature
- ...