Gelöste Aufgaben/Kw23: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 31: Zeile 31:
==tmp==
==tmp==
<!-------------------------------------------------------------------------------->
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Title
{{MyCodeBlock|title=Header
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
 
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Declarations
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
 
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Equilibrium Conditions
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
 
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Solving
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
 
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Post-Processing
|text=Text
|text=Text
|code=
|code=

Version vom 27. März 2021, 07:27 Uhr


Aufgabenstellung

Eine Kugel (Masse m, Radius r) wird aus der Höhe H im Erdschwerefeld losgelassen, kommt auf den Boden auf und „springt“ dann wie ein Flummi auf und ab. Der Stoß zwischen Kugel und Oberfläche sei ideal-elastisch. Gefragt ist eine numerische Lösung des Problems als Anfangswertproblem.

Dabei modellieren Sie die Kugel als elastisch, die Unterlage als starr. Die Kugel können Sie sich so wie unten skizziert im unteren Teil durch eine Feder ersetzt denken.

Lageplan

Eine elastische Kugel wird im Erdschwerefeld losgelassen und „springt“ wie ein Flummi auf und ab. Gesucht ist die numerische Lösung als Anfangswertproblem.


Lösung mit Maxima

Die Schwierigkeit kommt aus der Modellierung der Kontaktkraft zwischen Boden und Kugel. Oft reicht es, ein phänomenologisches Modell zu implementieren - also die Kontaktkraft als reine "Federkraft" zu interpretieren.

Kugel-Modell: elastischer Kontakt
mit Einfederung w.



Die Federkraft K ist also Null, solange die Kugel die Oberfläche nicht berührt und sie sei hier - eine weitere drastische Vereinfachung - proportional zur Federkompression w, wenn sich Kugel und Oberfläche berühren:

tmp

Header

Text


1+1




tmp

Declarations

Text


1+1




tmp

Equilibrium Conditions

Text


1+1




tmp

Solving

Text


1+1




tmp

Post-Processing

Text


1+1




Lageplan
Kontakt-Kennlinie
Freikörperbild
Lösung im Phasenraum
Lösung im Zeitbereich

Links

  • ...

Literature

  • ...