Gelöste Aufgaben/Kw23: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
Zeile 31: | Zeile 31: | ||
==tmp== | ==tmp== | ||
<!--------------------------------------------------------------------------------> | <!--------------------------------------------------------------------------------> | ||
{{MyCodeBlock|title= | {{MyCodeBlock|title=Header | ||
|text=Text | |||
|code= | |||
<syntaxhighlight lang="lisp" line start=1> | |||
1+1 | |||
</syntaxhighlight> | |||
}} | |||
==tmp== | |||
<!--------------------------------------------------------------------------------> | |||
{{MyCodeBlock|title=Declarations | |||
|text=Text | |||
|code= | |||
<syntaxhighlight lang="lisp" line start=1> | |||
1+1 | |||
</syntaxhighlight> | |||
}} | |||
==tmp== | |||
<!--------------------------------------------------------------------------------> | |||
{{MyCodeBlock|title=Equilibrium Conditions | |||
|text=Text | |||
|code= | |||
<syntaxhighlight lang="lisp" line start=1> | |||
1+1 | |||
</syntaxhighlight> | |||
}} | |||
==tmp== | |||
<!--------------------------------------------------------------------------------> | |||
{{MyCodeBlock|title=Solving | |||
|text=Text | |||
|code= | |||
<syntaxhighlight lang="lisp" line start=1> | |||
1+1 | |||
</syntaxhighlight> | |||
}} | |||
==tmp== | |||
<!--------------------------------------------------------------------------------> | |||
{{MyCodeBlock|title=Post-Processing | |||
|text=Text | |text=Text | ||
|code= | |code= |
Version vom 27. März 2021, 07:27 Uhr
Aufgabenstellung
Eine Kugel (Masse m, Radius r) wird aus der Höhe H im Erdschwerefeld losgelassen, kommt auf den Boden auf und „springt“ dann wie ein Flummi auf und ab. Der Stoß zwischen Kugel und Oberfläche sei ideal-elastisch. Gefragt ist eine numerische Lösung des Problems als Anfangswertproblem.
Dabei modellieren Sie die Kugel als elastisch, die Unterlage als starr. Die Kugel können Sie sich so wie unten skizziert im unteren Teil durch eine Feder ersetzt denken.
Eine elastische Kugel wird im Erdschwerefeld losgelassen und „springt“ wie ein Flummi auf und ab. Gesucht ist die numerische Lösung als Anfangswertproblem.
Lösung mit Maxima
Die Schwierigkeit kommt aus der Modellierung der Kontaktkraft zwischen Boden und Kugel. Oft reicht es, ein phänomenologisches Modell zu implementieren - also die Kontaktkraft als reine "Federkraft" zu interpretieren.
Kugel-Modell: elastischer Kontakt mit Einfederung w. | |
---|---|
Die Federkraft K ist also Null, solange die Kugel die Oberfläche nicht berührt und sie sei hier - eine weitere drastische Vereinfachung - proportional zur Federkompression w, wenn sich Kugel und Oberfläche berühren:
tmp
Header
Text
1+1
tmp
Declarations
Text
1+1
tmp
Equilibrium Conditions
Text
1+1
tmp
Solving
Text
1+1
tmp
Post-Processing
Text
1+1
Links
- ...
Literature
- ...