Gelöste Aufgaben/Kit5: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 34: Zeile 34:
==tmp==
==tmp==
<!-------------------------------------------------------------------------------->
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Title
{{MyCodeBlock|title=Lösen der dimensionslosen Bewegungsgleichung
|text=Text
|text=Text
|code=
|code=
Zeile 41: Zeile 41:
</syntaxhighlight>
</syntaxhighlight>
}}
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Formulation of Boundary Conditions
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=The Equations of Motion
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Solving
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Post-Processing
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}


<table class="wikitable">
<table class="wikitable">

Version vom 26. März 2021, 06:58 Uhr


Aufgabenstellung

Bei diesem Randwertproblem wird ein Euler-Bernoulli-Balken (Elastizitätsmodul E, Flächenmoment 2-ten Grades I) mit einer Streckenlast q0 im Bereich A-B belastet. In A  ist der Balken fest eingespannt, wobei durch eine Einbau-Ungenauigkeit der Rand im Verhältnis 1:10 geneigt ist.

In B hält das verschiebliche Lager den Balken horizontal. Gegen über Punkt A hält das Lager in B den Balken in einem vertikalen Abstand von W zur Horizontalen.

Datei:Datei:Kit5.png.png
Lageplan

Gesucht ist die Biegelinie des Balkens, der durch geometrische Randbedingungen vorverformt ist.


Lösung mit Maxima

In Kit4 finden Sie die Transformation der Bewegungsgleichung des Euler-Bernoulli-Balkens in die dimensionslose Form mit der allgemeinen Lösung

für die Bereiche i=1 (A-B) und i=2 (B-C).

Koordinaten

Dazu gehören die neuen dimensionslose Koordinaten ξ1 und ξ2:

Die Rand- und Übergangsbedingungen lauten dann mit 2 = ℓ1/2

, ,

tmp

Lösen der dimensionslosen Bewegungsgleichung

Text


1+1




tmp

Formulation of Boundary Conditions

Text


1+1




tmp

The Equations of Motion

Text


1+1




tmp

Solving

Text


1+1




tmp

Post-Processing

Text


1+1






w(x)



Links

  • ...

Literature

  • ...