Gelöste Aufgaben/JUMP/E-Motor and Drive-Train: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 223: Zeile 223:
print(δq, "*(-",MM,"*",transpose(diff(q,t,2)),"+",transpose(rest),") = 0")$
print(δq, "*(-",MM,"*",transpose(diff(q,t,2)),"+",transpose(rest),") = 0")$
</syntaxhighlight>
</syntaxhighlight>
}}Consequently, the drive train has only one state-variable: ''I<sub>M:</sub>''
}}


<math>\underline{q}_E(t) = \left( I_M(t) \right)</math>
Consequently, the drive train has only one state-variable: ''I<sub>M:</sub>''
 
::<math>\underline{q}_E(t) = \left( I_M(t) \right)</math>


where
where


<math>\frac{\displaystyle d}{\displaystyle d t} {I_M}(t)=\frac{\displaystyle {U_B} \operatorname{p}(t)-R\, {I_M}(t)-e}{\displaystyle L}</math>
::<math>\frac{\displaystyle d}{\displaystyle d t} {I_M}(t)=\frac{\displaystyle {U_B} \operatorname{p}(t)-R\, {I_M}(t)-e}{\displaystyle L}</math>


and with this algebraic equation
and with this algebraic equation


<math>e = k_e \cdot \left(\dot{\psi}_W(t) + \dot{\phi}(t) \right)</math>.
::<math>e = k_e \cdot \left(\dot{\psi}_W(t) + \dot{\phi}(t) \right)</math>.


==Variables==
==Variables==
{| class="wikitable"
{| class="wikitable"
!name
!name
Zeile 247: Zeile 250:


==Parameter==
==Parameter==
{| class="wikitable"
{| class="wikitable"
!name
!name

Version vom 10. März 2021, 14:37 Uhr

← Back to Start

Scope

Diagram: E-Motor and Drive Train

The Drive-Train consists of a DC/DC-converter, a DC Motor and a gear-box.

  • DC/DC-converter: is supplied with the battery voltage UB, the output voltage is controlled by the driver via setpoint “p“.
  • motor: is a standard DC brushed motor, the manufacturer provides only few information on its characteristics - we’ll need to improvise.
  • gearbox: has a gear ratio of ratio of nG=100, its shaft rotates at speed ωW and delivers a torque MW to the front wheels.

The task is: provide a mathematical model for the drive train that accounts for load-alterations imposed by the driver. And we assume losses in the two converters - DC/DC and gearbox - to be negligible.

Structure

Block diagram

The drive train receives a "gas"-pedal position "p" from the driver and a battery-voltage UB.

It delivers a torque MW on the wheel and creates an electric current IM through the motor.

Drive-train components.

The sub-model consists of  DC/DC-converter, Motor and gear-box:

DC/DC Converter

Losses in the DC/DC converter shall be small - so for input port “1“ and output port “2“ we obtain

U1I1=U2I2 .

Let the “gas”-pedal-indicator “p“ control

U2=pU10p1.

with

0p1 and U1=UB

Motor

Brushed-DC motor

We use a common electric circuit representation for a series wound motor, the field coils are connected electrically in series with the armature coils, resistance R sums up all electrical losses in the motor.

Gearbox

Losses in the gearbox shall be small - so for input (ωM, MM) and output (ωW, MW) we obtain the fixed relation

ωMMM=ωWMW.

And we have only one differential equation for the electrical components:

dIBdt=ULL,

the remaining equations are algebraic.

Model

Electrical Components

For the motor, we find with Kirchhoff's law that

UM=UR+UL+e

with UR, UL being the differential voltage over resistance R and inductance L respectively. “e” is the back electromagnetic force with

e=keωM

and the electromotive force constant ke. Note the ωM is the differential rotational velocity between rotor and stator, i.e.

ωM=ψ˙W(t)+ϕ˙(t).

Employing

UR=RIM,UL=LdIMdt

and using

MM=ktIM

with the armature constant kt, we have the complete set of equations.

From the above, we find

LddtIM(t)=UB(t)p(t)RIM(t)e

and additionally the algebraic equations

IB=IMp(t),UR=RIM(t),UL=UBp(t)RIM(t)e,UM=UBp(t).





Mechanical Components

The Virtual Work of d'Alembert forces, motor torque MM and wheel torque MW is

δW=JMψ¨M(t)δψM+MM(ψM+ϕ(t))MWδψW=0.

Since the gearbox is built into the car, the wheel-side relative gear-box-angle is

ψ~W=ψW(t)ϕ(t)

and on the motor-side

ψ~M=ψM(t)+ϕ(t).

With the gear transmission ratio

nG=ψ~Mψ~W

and

q_E=(ϕ(t)ψW(t))

we find

δW=δq_E(M__Eq¨_E+(nGMM+nGMMMW))

with

M__E=((nG2+2nG+1)JM(nG2+nG)JM(nG2+nG)JMnG2JM).

We have thus "returned" all state variables to the Car-Body-submodel.




Consequently, the drive train has only one state-variable: IM:

q_E(t)=(IM(t))

where

ddtIM(t)=UBp(t)RIM(t)eL

and with this algebraic equation

e=ke(ψ˙W(t)+ϕ˙(t)).

Variables

name symbol unit
motor current IM A

Parameter

name symbol unit

Back to Start →


References

  • ...