Gelöste Aufgaben/JUMP/E-Motor and Drive-Train: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 22: Zeile 22:
Losses in the DC/DC converter shall be small - so for input port “1“ and output port “2“ we obtain
Losses in the DC/DC converter shall be small - so for input port “1“ and output port “2“ we obtain


<math>U_1 \cdot I_1 = U_2 \cdot I_2</math> .
::<math>U_1 \cdot I_1 = U_2 \cdot I_2</math> .


Let the “gas”-pedal-indicator “''p''“ control
Let the “gas”-pedal-indicator “''p''“ control


<math>U_2 = p \cdot U_1 \text{; } 0 \le p \le 1.</math>
::<math>U_2 = p \cdot U_1 \text{; } 0 \le p \le 1.</math>


with
with


<math>0 \le p \le 1 \text{ and } U_1 = U_B</math>
::<math>0 \le p \le 1 \text{ and } U_1 = U_B</math>


===Motor===
===Motor===
Zeile 36: Zeile 36:
We use a common electric circuit representation for a series wound motor, the field coils are connected electrically in series with the armature coils, resistance ''R'' sums up all electrical losses in the motor.
We use a common electric circuit representation for a series wound motor, the field coils are connected electrically in series with the armature coils, resistance ''R'' sums up all electrical losses in the motor.
===Gearbox===
===Gearbox===
Losses in the gearbox shall be small - so for input (''ω<sub>M</sub>'', ''M<sub>M</sub>'') and output (''ω<sub>W</sub>'', ''M<sub>W</sub>'') we obtain the fixed relation
Losses in the gearbox shall be small - so for input (''ω<sub>M</sub>'', ''M<sub>M</sub>'') and output (''ω<sub>W</sub>'', ''M<sub>W</sub>'') we obtain the fixed relation


<math>\omega_M \cdot M_M = \omega_W \cdot M_W</math>.
::<math>\omega_M \cdot M_M = \omega_W \cdot M_W</math>.


And we have only one differential equation for the electrical components:
And we have only one differential equation for the electrical components:


<math>\frac{\displaystyle d I_B}{\displaystyle d t} = \frac{\displaystyle U_L}{\displaystyle L}</math>,
::<math>\frac{\displaystyle d I_B}{\displaystyle d t} = \frac{\displaystyle U_L}{\displaystyle L}</math>,


the remaining equations are algebraic.
the remaining equations are algebraic.


==Model==
==Model==
<!------------------------------------------------------------------------->


For the motor, we find with Kirchhoff's law that
{{MyCodeBlock
|title=Electrical Components
|text=For the motor, we find with Kirchhoff's law that


<math>U_M = U_R + U_L + e</math>
::<math>U_M = U_R + U_L + e</math>


with ''U<sub>R</sub>, U<sub>L</sub>'' being the differential voltage over resistance ''R'' and inductance ''L'' respectively. “''e''” is the back electromagnetic force with
with ''U<sub>R</sub>, U<sub>L</sub>'' being the differential voltage over resistance ''R'' and inductance ''L'' respectively. “''e''” is the back electromagnetic force with


<math>e = k_e\cdot \omega_M</math>
::<math>e = k_e\cdot \omega_M</math>


and the electromotive force constant ''k<sub>e</sub>''. Note the ''ω<sub>M</sub>'' is the differential rotational velocity between rotor and stator, i.e.  
and the electromotive force constant ''k<sub>e</sub>''. Note the ''ω<sub>M</sub>'' is the differential rotational velocity between rotor and stator, i.e.  


<math>\omega_M = \dot{\psi}_W(t) + \dot{\phi}(t).</math>
::<math>\omega_M = \dot{\psi}_W(t) + \dot{\phi}(t).</math>


Employing
Employing


<math>U_R = R \cdot I_M, U_L = L\cdot \frac{\displaystyle d I_M}{\displaystyle dt}</math>
::<math>U_R = R \cdot I_M, U_L = L\cdot \frac{\displaystyle d I_M}{\displaystyle dt}</math>


and using
and using


<math>M_M = k_t \cdot I_M</math>
::<math>M_M = k_t \cdot I_M</math>


with the armature constant ''k<sub>t</sub>'', we have the complete set of equations.
with the armature constant ''k<sub>t</sub>'', we have the complete set of equations.
Zeile 74: Zeile 74:
From the above, we find
From the above, we find


<math>L \cdot \frac{\displaystyle d}{\displaystyle d t} {I_M}(t)= U_B (t) \cdot p(t) -R \, {I_M}(t) - e</math>
::<math>L \cdot \frac{\displaystyle d}{\displaystyle d t} {I_M}(t)= U_B (t) \cdot p(t) -R \, {I_M}(t) - e</math>


and additionally the algebraic equations
and additionally the algebraic equations


<math>\begin{array}{ll}
::<math>\begin{array}{ll}
{I_B}&={I_M} \cdot \operatorname{p}(t),\\
{I_B}&={I_M} \cdot \operatorname{p}(t),\\
{U_R}&=R \cdot {I_M}(t),\\
{U_R}&=R \cdot {I_M}(t),\\
Zeile 84: Zeile 84:
{U_M}&={U_B} \cdot \operatorname{p}(t)
{U_M}&={U_B} \cdot \operatorname{p}(t)
\end{array}</math>.
\end{array}</math>.
|code=
<syntaxhighlight lang="lisp" line start=1>
/*******************************************************/
/* MAXIMA script                                      */
/* version: wxMaxima 16.04.2                          */
/* author: Andreas Baumgart                            */
/* last updated: 2021-02-08                            */
/* ref: Modelling and Simulation (TUAS)                */
/* description: virtual work of drive train electrics  */
/*******************************************************/
/*******************************************************/
/* declarations                                        */
/*******************************************************/
declare("φ", alphabetic);
declare("ψ", alphabetic);
declare("ω", alphabetic);


==tmp==
/*******************************************************/
/* kinematics                                          */
/*******************************************************/
kirchhoff : [U[M] = p(t)*U[B],
    U[B]*I[B] = U[M]*I[M],
    U[M] = U[R] + U[L] + e,
            e = k[e]*omega[M],
    ω[M] = diff(ψ[M](t),t)+diff(φ(t),t),
    U[R] = R*I[M](t),
    U[L] = L * diff(I[M](t),t),
    M[M] = k[t]*I[M](t)];


{{MyCodeBlock
solve(kirchhoff[7], [diff(I[M](t),t)]);
|title=Electrical Components
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1=2
</syntaxhighlight>
</syntaxhighlight>
}}
}}

Version vom 10. März 2021, 14:28 Uhr

← Back to Start

Scope

Diagram: E-Motor and Drive Train

The Drive-Train consists of a DC/DC-converter, a DC Motor and a gear-box.

  • DC/DC-converter: is supplied with the battery voltage UB, the output voltage is controlled by the driver via setpoint “p“.
  • motor: is a standard DC brushed motor, the manufacturer provides only few information on its characteristics - we’ll need to improvise.
  • gearbox: has a gear ratio of ratio of nG=100, its shaft rotates at speed ωW and delivers a torque MW to the front wheels.

The task is: provide a mathematical model for the drive train that accounts for load-alterations imposed by the driver. And we assume losses in the two converters - DC/DC and gearbox - to be negligible.

Structure

Block diagram

The drive train receives a "gas"-pedal position "p" from the driver and a battery-voltage UB.

It delivers a torque MW on the wheel and creates an electric current IM through the motor.

Drive-train components.

The sub-model consists of  DC/DC-converter, Motor and gear-box:

DC/DC Converter

Losses in the DC/DC converter shall be small - so for input port “1“ and output port “2“ we obtain

U1I1=U2I2 .

Let the “gas”-pedal-indicator “p“ control

U2=pU10p1.

with

0p1 and U1=UB

Motor

Brushed-DC motor

We use a common electric circuit representation for a series wound motor, the field coils are connected electrically in series with the armature coils, resistance R sums up all electrical losses in the motor.

Gearbox

Losses in the gearbox shall be small - so for input (ωM, MM) and output (ωW, MW) we obtain the fixed relation

ωMMM=ωWMW.

And we have only one differential equation for the electrical components:

dIBdt=ULL,

the remaining equations are algebraic.

Model

Electrical Components

For the motor, we find with Kirchhoff's law that

UM=UR+UL+e

with UR, UL being the differential voltage over resistance R and inductance L respectively. “e” is the back electromagnetic force with

e=keωM

and the electromotive force constant ke. Note the ωM is the differential rotational velocity between rotor and stator, i.e.

ωM=ψ˙W(t)+ϕ˙(t).

Employing

UR=RIM,UL=LdIMdt

and using

MM=ktIM

with the armature constant kt, we have the complete set of equations.

From the above, we find

LddtIM(t)=UB(t)p(t)RIM(t)e

and additionally the algebraic equations

IB=IMp(t),UR=RIM(t),UL=UBp(t)RIM(t)e,UM=UBp(t).




tmp

Mechanical Components

Text




Variables

Parameter


>

Back to Start →


References

  • ...