Gelöste Aufgaben/FEB1: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 176: Zeile 176:
</syntaxhighlight>
</syntaxhighlight>
}}
}}
==tmp==
<!-------------------------------------------------------------------------------->Die Lösung des linearen Gleichungssystems


<math>\underline{\underline{K}}\cdot \underline{U} = \underline{P}</math>
<!-------------------------------------------------------------------------------->{{MyCodeBlock|title=Solving
|text=
Die Lösung des linearen Gleichungssystems
 
::<math>\underline{\underline{K}}\cdot \underline{U} = \underline{P}</math>


ist
ist


<math>\underline{U} = \begin{pmatrix}\frac{47{{l}_{0}^{3}}\,{{\Omega}^{2}}\rho}{384E}\\ \frac{11{{l}_{0}^{3}}\,{{\Omega}^{2}}\rho}{48E}\\ \frac{39{{l}_{0}^{3}}\,{{\Omega}^{2}}\rho}{128E}\\ \frac{{{l}_{0}^{3}}\,{{\Omega}^{2}}\rho}{3E}\end{pmatrix}</math>.
::<math>\underline{U} = \begin{pmatrix}\frac{47{{l}_{0}^{3}}\,{{\Omega}^{2}}\rho}{384E}\\ \frac{11{{l}_{0}^{3}}\,{{\Omega}^{2}}\rho}{48E}\\ \frac{39{{l}_{0}^{3}}\,{{\Omega}^{2}}\rho}{128E}\\ \frac{{{l}_{0}^{3}}\,{{\Omega}^{2}}\rho}{3E}\end{pmatrix}</math>.


Oder - in dimensionsloser Form
Oder - in dimensionsloser Form


<math>\displaystyle \frac{\underline{U}}{u_s} = \begin{pmatrix}\frac{47}{128}\\ \frac{11}{16}\\ \frac{117}{128}\\ 1\end{pmatrix}</math>.{{MyCodeBlock|title=Solving
::<math>\displaystyle \frac{\underline{U}}{u_s} = \begin{pmatrix}\frac{47}{128}\\ \frac{11}{16}\\ \frac{117}{128}\\ 1\end{pmatrix}</math>.
|text=Text
|code=
|code=
<syntaxhighlight lang="lisp" line start=1>
<syntaxhighlight lang="lisp" line start=1>
1+1
/* solve */
print(K[0],"*Q=",P[0])$
sol[2] : subst([l[i]=l[0]/I],linsolve_by_lu(K[0],P[0])[1]);
</syntaxhighlight>
</syntaxhighlight>
}}
}}
==tmp==


 
<!-------------------------------------------------------------------------------->{{MyCodeBlock|title=Post-Processing
<!-------------------------------------------------------------------------------->[[Datei:FEB1-11.png|mini|Auslenkung ''u(x)''.]]
|text=
[[Datei:FEB1-11.png|mini|Auslenkung ''u(x)''.]]
Die Ergebnisse der FE-Rechnung und der analytischen Lösung können wir jetzt übereinander auftragen:
Die Ergebnisse der FE-Rechnung und der analytischen Lösung können wir jetzt übereinander auftragen:


Zeile 204: Zeile 207:
<math>\displaystyle \varepsilon_{rr} = \frac{du}{dr}</math>.
<math>\displaystyle \varepsilon_{rr} = \frac{du}{dr}</math>.


Auch dieses Ergebnis können wir auftragen:[[Datei:FEB1-12.png|mini|Dehnung ε(x).|alternativtext=|links]]{{MyCodeBlock|title=Post-Processing
Auch dieses Ergebnis können wir auftragen:[[Datei:FEB1-12.png|mini|Dehnung ε(x).|alternativtext=|links]]
|text=
 


{{MyTip|title=Konstante Dehnung je Element|text=Was ausschaut wie ein Fehler - nämlich die "Treppenfunktion" für die Dehnung im FE-Modell - ist in Wirklichkeit die Folge unserer linearen Ansatzfunktionen. Diese abgeleitet liefern eine konstante Dehnung je Element.}}
{{MyTip|title=Konstante Dehnung je Element|text=Was ausschaut wie ein Fehler - nämlich die "Treppenfunktion" für die Dehnung im FE-Modell - ist in Wirklichkeit die Folge unserer linearen Ansatzfunktionen. Diese abgeleitet liefern eine konstante Dehnung je Element.}}
Zeile 212: Zeile 213:
|code=
|code=
<syntaxhighlight lang="lisp" line start=1>
<syntaxhighlight lang="lisp" line start=1>
1+1
 
/* post-processing */
U : append([0],args(transpose(sol[2])[1]/subst(params,u[s])));
X : makelist(i,i,0,I)/I;
 
plot2d([ratsimp(subst([r=xi*l[0]],subst(disp,u(r))/subst(params,u[s]))),
      [discrete, X, U],[discrete, X, U]], [xi,0,1],
      [legend, "analytic", "FEM", ""],
      [style, [lines,2,1], [lines,2,2], [points,2,2]],
      [point_type, asterisk],
      [xlabel, "ξ →"], [ylabel, "u →"])$
 
eps: subst(params,u[s])*makelist((U[i+1]-U[i]),i,1,I)/(l[0]/I);
toPlot : append([expand(subst([r=xi*l[0]],diff(subst(disp,u(r)),r))/((l[0]^2*Omega^2*rho)/E))],
                makelist([discrete,[i-1,i]/I, [eps[i],eps[i]]/((l[0]^2*Omega^2*rho)/E)],i,1,I));
legends : append([legend, "analytic"],makelist(simplode(["Elem. ",i]),i,1,I));
 
plot2d(toPlot, [xi,0,1], legends, [y,0,0.6],
      [style, [lines,2]],
      [xlabel, "ξ →"], [ylabel, "ε/((l^2 ω^2 ρ/E) →"])$
</syntaxhighlight>
</syntaxhighlight>
}}
}}

Version vom 25. Februar 2021, 13:41 Uhr


Aufgabenstellung

Auch wenn es nicht so aussieht: für das rotierende Rotorblatt suchen wir eine statische Lösung - das Problem heißt "quasistatisch".


Lageplan

Ein Hubschrauber-Rotor dreht mir der konstanten Winknelgeschwindigkeit Ω. Das Rotor-Blatt ist aus Aluminium. Gesucht ist die FEM-Lösung für der Verschiebung der Querschnitte und die Dehnung der Querschnitte.


Lösung mit Maxima

Declarations

Für die Komposition der Bewegungsgleichungen brauchen wir die Element-Steifigkeitsmatrix und die Element-Lastmatrix.

Wir gehen von gleichlangen Elementen aus, hier von

I=4

Elementen, also

i=0I.

Wie im Abschnitt "Finite Elemente Methode" verwenden wir die linearen Ansatzfunktionen

ϕ1=1ξ und ϕ1=ξ,

also

ui(ξi)=Ui1ϕ1(ξ1)+Uiϕ2(ξi).

Die Element-Steifigkeitsmatrix ergibt sich für den Dehnstab zu

K__i=EAi(1111).

Die Element-Lastmatrix ist etwas schwieriger. Für ein einzelnes Element i ist

δWa=ri1riϱArΩ2δu(r)dr.

Mit

r=ri1+iξi und ri1=(i1)i

schreiben die Beziehung um zu

δWa=ϱAΩ2i201(i+ξ)δu(ξ)dξ,

wir erhalten

P_i=ϱAΩ2i2(3i+163i+26).




Equlibrium Conditions

Die Gleichgewichtsbeziehungen des Gesamtsystems erhalten wir durch aus der Addition aller virtuellen Arbeiten des Systems, praktisch durch das Hinzuaddieren der Anteile je Element in die System-Matrizen für K und P:

K__=(AEiAEi000AEi2AEiAEi000AEi2AEiAEi000AEi2AEiAEi000AEiAEi)

und

P_=ϱAi2Ω2(16123116)




Boundary Conditions

Die geometrische Randbedingung U0 = 0 arbeiten wir ein, indem wir die erste Zeile des Gleichungssystem streichen sowie die erste Spalte der Steifigketsmatrix.




Solving

Die Lösung des linearen Gleichungssystems

K__U_=P_

ist

U_=(47l03Ω2ρ384E11l03Ω2ρ48E39l03Ω2ρ128El03Ω2ρ3E).

Oder - in dimensionsloser Form

U_us=(4712811161171281).




Post-Processing

Auslenkung u(x).

Die Ergebnisse der FE-Rechnung und der analytischen Lösung können wir jetzt übereinander auftragen:

Die Dehnungen (und Spannungen) im Bauteil sind

εrr=dudr.

Auch dieses Ergebnis können wir auftragen:

Dehnung ε(x).
Konstante Dehnung je Element:
Was ausschaut wie ein Fehler - nämlich die "Treppenfunktion" für die Dehnung im FE-Modell - ist in Wirklichkeit die Folge unserer linearen Ansatzfunktionen. Diese abgeleitet liefern eine konstante Dehnung je Element.




Links

  • ...

Literature

  • ...