Gelöste Aufgaben/FEAE: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Zeile 166: Zeile 166:
}}
}}


==tmp==
<!-------------------------------------------------------------------------------->{{MyCodeBlock|title=Homogeneous Solution
<!-------------------------------------------------------------------------------->Für die Lösung der homogenen Bewegungsgleichung  
|text=
Für die Lösung der homogenen Bewegungsgleichung  


<math>\underline{\underline{M}}\cdot\underline{\ddot{Q}} + \underline{\underline{K}}\cdot\underline{Q} = \underline{0}</math>
::<math>\underline{\underline{M}}\cdot\underline{\ddot{Q}} + \underline{\underline{K}}\cdot\underline{Q} = \underline{0}</math>


setzen wir (vgl. [[Sources/Lexikon/Modalanalyse|Modalanalyse]]) an
setzen wir (vgl. [[Sources/Lexikon/Modalanalyse|Modalanalyse]]) an


<math>\displaystyle \underline{Q}_h = \underline{\hat{Q}}_h\cdot e^{\lambda\cdot t}</math>
::<math>\displaystyle \underline{Q}_h = \underline{\hat{Q}}_h\cdot e^{\lambda\cdot t}</math>


und erhalten das [[Werkzeuge/Lösungsbausteine der Mathematik/Eigenwertprobleme|Eigenwertproblem]]
und erhalten das [[Werkzeuge/Lösungsbausteine der Mathematik/Eigenwertprobleme|Eigenwertproblem]]


<math>\underbrace{\left(\lambda^2 \underline{\underline{M}} + \underline{\underline{K}}\right)}_{\displaystyle \underline{\underline{D}}(\lambda)}\cdot\underline{\hat{Q}}_h = \underline{0}</math>
::<math>\underbrace{\left(\lambda^2 \underline{\underline{M}} + \underline{\underline{K}}\right)}_{\displaystyle \underline{\underline{D}}(\lambda)}\cdot\underline{\hat{Q}}_h = \underline{0}</math>


mit  
mit  
{| class="wikitable"
<table>
|den Eigenwerten
<tr><td>den Eigenwerten</td><td><math>\lambda</math> und</td></tr>
|<math>\lambda</math>
<tr><td>den Eigenvektoren</td><td><math>\displaystyle \underline{\hat{Q}}_{h}</math></td></tr>
|und
</table>
|-
|den Eigenvektoren
|<math>\displaystyle \underline{\hat{Q}}_{h}</math>
|.
|}
Die Berechnung der Eigenwerte ''λ'' wird einfacher mit
Die Berechnung der Eigenwerte ''λ'' wird einfacher mit


<math>\lambda^2 = -\Lambda</math>
::<math>\lambda^2 = -\Lambda</math>


und wir transformieren parallel die Bewegungsgleichungen auf die dimensionslose Zeit
und wir transformieren parallel die Bewegungsgleichungen auf die dimensionslose Zeit


<math>\displaystyle \tau := \frac{t}{t_{Bez}}</math> mit <math>t_{Bez} = T.</math>,
::<math>\displaystyle \tau := \frac{t}{t_{Bez}}</math> mit <math>t_{Bez} = T.</math>,


also  
also  


<math>\displaystyle \underline{\ddot{Q}} = \frac{d^2\underline{Q}}{d\tau^2}\cdot\underbrace{\frac{d^2\tau}{dt^2}}_{\displaystyle \frac{1}{T^2}}</math>.
::<math>\displaystyle \underline{\ddot{Q}} = \frac{d^2\underline{Q}}{d\tau^2}\cdot\underbrace{\frac{d^2\tau}{dt^2}}_{\displaystyle \frac{1}{T^2}}</math>.


Wir finden zwei Eigenwerte aus der Bedingung det(''D'')=0:
Wir finden zwei Eigenwerte aus der Bedingung det(''D'')=0:


<math>\begin{array}{lr}\Lambda_1 = &2 \cdot \pi^2\\\Lambda_2 = &12 \cdot \pi^2\\\end{array}</math>
::<math>\begin{array}{lr}\Lambda_1 = &2 \cdot \pi^2\\\Lambda_2 = &12 \cdot \pi^2\\\end{array}</math>


und
und


<math>\begin{array}{lr}\lambda_1 = &j \cdot \sqrt{2} \cdot \pi\\\lambda_2 = &j \cdot 2\sqrt(3) \cdot \pi\\\end{array} \text{ mit } j := \sqrt{-1}</math>.
::<math>\begin{array}{lr}\lambda_1 = &j \cdot \sqrt{2} \cdot \pi\\\lambda_2 = &j \cdot 2\sqrt(3) \cdot \pi\\\end{array} \text{ mit } j := \sqrt{-1}</math>.


Für die Matrix
Für die Matrix


<math>\displaystyle \underline{\underline{D}}(\lambda_i) = \lambda^2\cdot \frac{1}{T^2}\cdot \underline{\underline{M}} + \underline{\underline{K}}</math>
::<math>\displaystyle \underline{\underline{D}}(\lambda_i) = \lambda^2\cdot \frac{1}{T^2}\cdot \underline{\underline{M}} + \underline{\underline{K}}</math>


stellen wir fest:
stellen wir fest:
Zeile 222: Zeile 218:
Die Eigenvektoren spannen nun den Nullraum (nullspace) der Matrix auf. Normmert auf die Länge 1 sind das
Die Eigenvektoren spannen nun den Nullraum (nullspace) der Matrix auf. Normmert auf die Länge 1 sind das


* für ''λ<sub>1</sub>'':  
<ul>
<math>\displaystyle \underline{\hat{Q}}_{h,1} = \frac{1}{\sqrt{5}} \cdot \left(\begin{array}{c}1\\2 \end{array}\right)</math> und
<li> für ''λ<sub>1</sub>'': <br/>
* für ''λ<sub>2</sub>'':  
<math>\displaystyle \underline{\hat{Q}}_{h,1} = \frac{1}{\sqrt{5}} \cdot \left(\begin{array}{c}1\\2 \end{array}\right)</math> und</li>
<math>\displaystyle \underline{\hat{Q}}_{h,2} = \frac{1}{\sqrt{5}} \cdot \left(\begin{array}{c}2\\-1 \end{array}\right)</math>.
<li>für ''λ<sub>2</sub>'': <br/>
 
<math>\displaystyle \underline{\hat{Q}}_{h,2} = \frac{1}{\sqrt{5}} \cdot \left(\begin{array}{c}2\\-1 \end{array}\right)</math>.</li>
</ul>
Die homogene Lösung der Bewegungsgleichung lautet damit
Die homogene Lösung der Bewegungsgleichung lautet damit


<math>\displaystyle \underline{{Q}}_{h}(t) = c_1\cdot \frac{1}{\sqrt{5}} \cdot \left(\begin{array}{r}1\\2\end{array}\right) \cdot e^{\displaystyle j\cdot\sqrt{2}\pi \cdot \tau} + c_2\cdot \frac{1}{\sqrt{5}} \cdot \left(\begin{array}{r}2\\-1 \end{array}\right) \cdot e^{\displaystyle j\cdot 2\sqrt{3}\pi \cdot \tau}</math>
::<math>\displaystyle \underline{{Q}}_{h}(t) = c_1\cdot \frac{1}{\sqrt{5}} \cdot \left(\begin{array}{r}1\\2\end{array}\right) \cdot e^{\displaystyle j\cdot\sqrt{2}\pi \cdot \tau} + c_2\cdot \frac{1}{\sqrt{5}} \cdot \left(\begin{array}{r}2\\-1 \end{array}\right) \cdot e^{\displaystyle j\cdot 2\sqrt{3}\pi \cdot \tau}</math>


mit den Integrationskonstanten ''c<sub>1</sub>'' und ''c<sub>2</sub>''. Durch die komplexen Eigenwerte sind die beiden Integrationskonstanten nun auch komplexwertig, also
mit den Integrationskonstanten ''c<sub>1</sub>'' und ''c<sub>2</sub>''. Durch die komplexen Eigenwerte sind die beiden Integrationskonstanten nun auch komplexwertig, also


<math>\begin{array}{l}c_1 = c_{R,1} + j\cdot c_{I,1}\\c_2 = c_{R,2} + j\cdot c_{I,2}\end{array}</math>.
::<math>\begin{array}{l}c_1 = c_{R,1} + j\cdot c_{I,1}\\c_2 = c_{R,2} + j\cdot c_{I,2}\end{array}</math>.


Diese vier reell-wertigen Integrationskonstanten bekommen wir aus vier Anfangsbedingungen für die beiden Massen, hier
Diese vier reell-wertigen Integrationskonstanten bekommen wir aus vier Anfangsbedingungen für die beiden Massen, hier


<math>\begin{array}{l}w_1(0) = 0\\w_2(0) = 0\\\dot{w}_1(0) = 0\\\dot{w}_2(0) = 0\end{array}</math>.
::<math>\begin{array}{l}w_1(0) = 0\\w_2(0) = 0\\\dot{w}_1(0) = 0\\\dot{w}_2(0) = 0\end{array}</math>.


Wir finden
Wir finden


<math>\displaystyle {{c}_{R,1}}=-\frac{6\;{{m}}\;g}{\sqrt{5}\;{{k}}},{{c}_{I,1}}=0,{{c}_{R,2}}=-\frac{{{m}}\;g}{3\;\sqrt{5}\;{{k}}},{{c}_{I,2}}=0</math>.
::<math>\displaystyle {{c}_{R,1}}=-\frac{6\;{{m}}\;g}{\sqrt{5}\;{{k}}},{{c}_{I,1}}=0,{{c}_{R,2}}=-\frac{{{m}}\;g}{3\;\sqrt{5}\;{{k}}},{{c}_{I,2}}=0</math>.


und damit  
und damit  


<math>\underline{Q}_{h}(t) = 15\cdot \begin{pmatrix}-2\cos{\left( 2\sqrt{3}{\pi} \cdot \tau\right) }-18\cos{\left( \sqrt{2}{\pi} \cdot \tau\right) }\\ \cos{\left( 2\sqrt{3}{\pi} \cdot \tau\right) }-36\cos{\left( \sqrt{2}{\pi} \cdot \tau\right) }\end{pmatrix}</math>.{{MyCodeBlock|title=Homogeneous Solution
::<math>\underline{Q}_{h}(t) = 15\cdot \begin{pmatrix}-2\cos{\left( 2\sqrt{3}{\pi} \cdot \tau\right) }-18\cos{\left( \sqrt{2}{\pi} \cdot \tau\right) }\\ \cos{\left( 2\sqrt{3}{\pi} \cdot \tau\right) }-36\cos{\left( \sqrt{2}{\pi} \cdot \tau\right) }\end{pmatrix}</math>.
|text=Text
|code=
|code=
<syntaxhighlight lang="lisp" line start=1>
<syntaxhighlight lang="lisp" line start=1>
1+1
 
/* direct approach */
load(eigen); eigensystem: uniteigenvectors(subst(params, invert(M).K));
/* -> not employed */
 
/**************** homogeneous solution */
/* solve eigenvalue problem */
Q[E] : matrix([q[1,i]],[q[2,i]]);
ansatz: Q[h] = Q[E]*%e^(%lambda[i]*tau);
 
D : -Lambda*(1/T)^2*M + K;
D : subst(params, D);
charPoly : determinant(D);
 
/* eigenvalues */
eigval : solve(subst(params,charPoly)=0,Lambda);
eigval : subst(abbrev, eigval);
 
/* save for later ....*/
eigvalList : makelist(subst(eigval[j],[%lambda[j]=%i*sqrt(Lambda)]),j,1,2);
 
/* eigenvectors */
prop: [rnk = rank(subst(eigval[1],subst(params,D))), nly = nullity(subst(eigval[1],D))];
 
eigvec : makelist(apply (addcol, args (nullspace(
                          subst(abbrev,subst(eigval[i],D/k[0]))))),i,1,2);
 
/* norm eigenvectors (to be of length "1" */
eigvec : makelist(eigvec[i]/sqrt(eigvec[i].eigvec[i]),i,1,2);
 
/* adapt to initial values w[1](0)=0, w[2](0)=0 */
Q[h] : sum(subst(eigval[j],subst([%lambda[j]=%i*sqrt(Lambda),i=j],
                          (c[R,j]+%i*c[I,j])*eigvec[j]*%e^(%lambda[j]*tau))),j,1,2);
 
/* update Q[t]*/
Q[t] : ''(Q[t]);
 
/* adapt to initial values */
intcons : [c[R,1],c[I,1],c[R,2],c[I,2]];
intcond : append(makelist(subst([tau=0],    Q[t]    )[i][1]=0,i,1,2),
                makelist(subst([tau=0],diff(Q[t],tau))[i][1]=0,i,1,2));
 
/* integration constants: */
sol[1] : ratsimp(solve(realpart(intcond),intcons)[1]);
 
Q[t] : realpart(ratsimp(subst(params,subst(sol[1],Q[t]/w[s]))))
</syntaxhighlight>
</syntaxhighlight>
}}
}}

Version vom 24. Februar 2021, 11:42 Uhr



Aufgabenstellung

Wir schauen uns die Lösungsanteile für die Bewegungsgleichung des Zwei-Masse-Schwinger an: welche Rolle spielen die homogene und partikulare Lösung?

Lageplan

Gesucht ist Gesamtlösung des Systems im Zeitbereich beim Loslassen der beiden Massen aus der Referenz-Konfiguration, bei der beide Federn entspannt sind. Wir stellen die Bewegungsgleichung mit dem Prinzip der virtuellen Verrückungen auf.

Wir arbeiten mit den System-Parametern

Lösung mit Maxima

Header

Der Lösungsweg zu dieser Aufgabe wird bereits in Integration der Differentialbeziehung (IVP) gezeigt, hier verfolgende wir einen etwas allgemeineren Lösungspfad.

Dabei arbeiten wir u.a. mit quadratischen Gleichungen. Für deren Lösung müssen wir Maxima wissen lassen, welche Parameter positiv sind, also

Koordinaten der Bewegung.
Die Lage-Koordinaten des Systems fassen wir in

zusammen.

Für die dimensionslose Schreibweise brauchen wir später eine Bezugszeit tBez.

Dazu nehmen wir eine "Anleihe" bei einem ähnlichen System:

Für dieses System "kennen" wir die Eigenkreisfrequenz

.

Aus diesem Modell "leihen" wir uns die Bezugszeit zu

.

und wählen

Hier kennen wir ω0.

/*******************************************************/
/* MAXIMA script                                       */
/* version: wxMaxima 16.04.2                           */
/* author: Andreas Baumgart                            */
/* last updated: 2018-01-07                            */
/* ref: FEM, PVMPE using two coordinates               */
/* description: solve by principle virt. Work          */
/*******************************************************/
/* declare variational variables - see 6.3 Identifiers */
declare("δW", alphabetic);
declare("δA", alphabetic);
declare("δΠ", alphabetic);
declare("δw", alphabetic);
declare("δQ", alphabetic);

/* assumptions */
assume(k[0]>0,m[0]>0,T>0);

/* abbreviations */
abbrev : [omega[0,0]=2*%pi/T, omega[0,0]^2= k[0]/m[0]];
abbrev : append(abbrev, solve(abbrev,[omega[0,0],T])[2]);

/* system parameters and dimensionless time tau */
params: [m[1]=m[0],m[2]=m[0],k[1]=3/2*k[0],k[2]=k[0],
         t = T*tau, w[s] = m[0]*g/k[0]];

/* coordinates */
 Q[t]: [ w[1](t), w[2](t)]; 
δQ[t]: [δw[1]   ,δw[2]   ];




Equilibrium Conditions

Die Gleichgewichtsbedingung mit dem Prinzip der virtuellen Verrückungen lautet

.

Aufgelöst nach den Koeffizienten der virtuellen Verrückungen folgt die gewöhnliche, lineare Differentialgleichung:

.

In dieser Beziehung stehen jetzt nur noch m0 und k0 - die Indizes "0" können wir also ab hier weglassen. In Matrix-Schreibweise lautet die Bewegungsgleichung jetzt:

.

/* virtual of system (equilibrium condition) */
PvV : [δW = δW^a - δΠ,
       δW^a = - sum(m[i]* diff(w[i](t),t,2)*δw[i],i,1,2) + sum(m[i]*g*δw[i],i,1,2),
       δΠ   =   sum(k[i]*(w[i](t)-w[i-1](t))*(δw[i]-δw[i-1]),i,1,2)];

/* equlilbrium condition */

eom: subst(PvV[3],subst(PvV[2],subst(PvV[1],δW=0)));
eom: expand(subst([w[0](t)=0,δw[0]=0],eom));

M : -funmake('matrix,makelist(makelist(coeff(coeff(lhs(eom),δQ[t][i]),diff(Q[t][j],t,2)),i,1,2),j,1,2));
K : -funmake('matrix,makelist(makelist(coeff(coeff(lhs(eom),δQ[t][i]),     Q[t][j]     ),i,1,2),j,1,2));
G :  funmake('matrix,makelist(coeff(
            subst(makelist(diff(Q[t][i],t,2)=0,i,1,2), 
            subst(makelist(     Q[t][i]=0     ,i,1,2),[lhs(eom)])),δQ[t][j]), j,1,2));

/* control print-out */
print(M,"∙",transpose(diff(Q[t],t,2)),"+",K,"∙",transpose(Q[t]),"=",G)$




Solving

Die Lösung des Anfangswertproblems setzt sich aus zwei Teilen zusammen:

  • der partikularen Lösung, die die Rechte Seite "G" erfüllt und
  • der homogenen Lösung, die die Rechte Seite "0" erfüllt.

Die Gesamtlösung Qt setzt sich nun - bei diesem linearen System - additiv aus partikularer Qp und Qh homogener Lösung zusammen:


/**************** total solution */
Q[t] : Q[p] + Q[h]




Right-Hand-Side Approach

Die rechte Seite der Bewegungsgleichung G ist nicht zeitabhängig - sie ist statisch. Also ist auch die Lösung Qp - die partikulare Lösung - statisch, wir suchen nach der Lösung des Gleichungssystems

und die ist

Wir führen die Abkürzung

ein, also ist

.

/**************** particular solution */
Q[p] : ratsimp(subst(params,linsolve_by_lu(K,G)[1]));




Homogeneous Solution

Für die Lösung der homogenen Bewegungsgleichung

setzen wir (vgl. Modalanalyse) an

und erhalten das Eigenwertproblem

mit

den Eigenwerten und
den Eigenvektoren

Die Berechnung der Eigenwerte λ wird einfacher mit

und wir transformieren parallel die Bewegungsgleichungen auf die dimensionslose Zeit

mit ,

also

.

Wir finden zwei Eigenwerte aus der Bedingung det(D)=0:

und

.

Für die Matrix

stellen wir fest:

Die Matrix hat

  • einen Rang (rank) von 1 - es gibt eine linear abhängige Zeile im Gleichungssystem und - entsprechend -
  • einen Rangabfall (nullity)  von 1.

Die Eigenvektoren spannen nun den Nullraum (nullspace) der Matrix auf. Normmert auf die Länge 1 sind das

  • für λ1:
    und
  • für λ2:
    .

Die homogene Lösung der Bewegungsgleichung lautet damit

mit den Integrationskonstanten c1 und c2. Durch die komplexen Eigenwerte sind die beiden Integrationskonstanten nun auch komplexwertig, also

.

Diese vier reell-wertigen Integrationskonstanten bekommen wir aus vier Anfangsbedingungen für die beiden Massen, hier

.

Wir finden

.

und damit

.

/* direct approach */
load(eigen); eigensystem: uniteigenvectors(subst(params, invert(M).K));
/* -> not employed */

/**************** homogeneous solution */
/* solve eigenvalue problem */
Q[E] : matrix([q[1,i]],[q[2,i]]);
ansatz: Q[h] = Q[E]*%e^(%lambda[i]*tau);

D : -Lambda*(1/T)^2*M + K;
D : subst(params, D);
charPoly : determinant(D);

/* eigenvalues */
eigval : solve(subst(params,charPoly)=0,Lambda);
eigval : subst(abbrev, eigval);

/* save for later ....*/
eigvalList : makelist(subst(eigval[j],[%lambda[j]=%i*sqrt(Lambda)]),j,1,2);

/* eigenvectors */
prop: [rnk = rank(subst(eigval[1],subst(params,D))), nly = nullity(subst(eigval[1],D))];

eigvec : makelist(apply (addcol, args (nullspace(
                           subst(abbrev,subst(eigval[i],D/k[0]))))),i,1,2);

/* norm eigenvectors (to be of length "1" */
eigvec : makelist(eigvec[i]/sqrt(eigvec[i].eigvec[i]),i,1,2);

/* adapt to initial values w[1](0)=0, w[2](0)=0 */
Q[h] : sum(subst(eigval[j],subst([%lambda[j]=%i*sqrt(Lambda),i=j],
                           (c[R,j]+%i*c[I,j])*eigvec[j]*%e^(%lambda[j]*tau))),j,1,2);

/* update Q[t]*/
Q[t] : ''(Q[t]);

/* adapt to initial values */
intcons : [c[R,1],c[I,1],c[R,2],c[I,2]];
intcond : append(makelist(subst([tau=0],     Q[t]     )[i][1]=0,i,1,2),
                 makelist(subst([tau=0],diff(Q[t],tau))[i][1]=0,i,1,2));

/* integration constants: */
sol[1] : ratsimp(solve(realpart(intcond),intcons)[1]);

Q[t] : realpart(ratsimp(subst(params,subst(sol[1],Q[t]/w[s]))))




tmp

Die Lösung für

  • w1 (blau) und
  • w2 (rot)

im Zeitbereich, angepasst an die Anfangsbedingungen, sieht nun so aus:

Ergebnis-Plots für w1(t), w2(t).

Interessant ist die separate Auftragung der Lösungsanteile nach partikularer Lösung (Index "p") und den beiden homogenen Lösungsanteilen (Index "h1", "h2"). Man erkennt, wie die Summe jeweils der blauen und der roten Anteile die Gesamtlösung ergibt.

Ergebnis-Plot mit den Lösungsanteilen.

===Post-Processing===

Text


1+1






Links

  • ...

Literature

  • ...