Gelöste Aufgaben/DGEB: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 151: | Zeile 151: | ||
<!--------------------------------------------------------------------------------> | <!--------------------------------------------------------------------------------> | ||
= | {{MyCodeBlock|title=Stress-Strain-Relations for a Rod | ||
|text= | |||
Die Komponenten des Spannungs- und Verzerrungs-Tensors fassen in den Matrizen | Die Komponenten des Spannungs- und Verzerrungs-Tensors fassen in den Matrizen | ||
Zeile 167: | Zeile 168: | ||
Die ersten beiden Zeilen sind klar: die Hauptspannungen senkrecht zur Stab-Längsachse verschwinden. Ausnahmen machen hier nur Stäbe, die z.B. durch großen Drücke belastet sind wie bei Bohrsträngen. | Die ersten beiden Zeilen sind klar: die Hauptspannungen senkrecht zur Stab-Längsachse verschwinden. Ausnahmen machen hier nur Stäbe, die z.B. durch großen Drücke belastet sind wie bei Bohrsträngen. | ||
[[Datei:DGEB-3d-shear.png|mini|Scherung - nicht betrachtet.]] | |||
Die Zeilen 3 und 4 gehören zu Spannungen, die einen Querschnitt in der skizzierten Weise verformen würden. Das passiert bei symmetrischen | Die Zeilen 3 und 4 gehören zu Spannungen, die einen Querschnitt in der skizzierten Weise verformen (schweren) würden. Das passiert bei symmetrischen Querschnitten wie hier einem Rechteck-Querschnitt nicht. | ||
Querschnitten wie hier einem Rechteck-Querschnitt nicht. | |||
Mit diesen vier Annahmen können wir aus der Beziehung | Mit diesen vier Annahmen können wir aus der Beziehung | ||
Zeile 178: | Zeile 179: | ||
vier Gleichungen herausnehmen und wählen | vier Gleichungen herausnehmen und wählen | ||
::<math>\begin{array}{ll}{{\varepsilon}_{x,y}}&=0\\ {{\varepsilon}_{y,z}}&=0\\ {{\varepsilon}_{y,y}}&=\displaystyle -\frac{{{\varepsilon}_{x,x}}\cdot \lambda}{2\cdot \mu+2\cdot \lambda}\\ {{\varepsilon}_{z,z}}&=\displaystyle -\frac{{{\varepsilon}_{x,x}}\cdot \lambda}{2\cdot \mu+2\cdot \lambda}\end{array}</math>. | ::<math>\begin{array}{ll}{{\varepsilon}_{x,y}}&=0\\ {{\varepsilon}_{y,z}}&=0\\ {{\varepsilon}_{y,y}}&=\displaystyle -\frac{{{\varepsilon}_{x,x}}\cdot \lambda}{2\cdot \mu+2\cdot \lambda}\\ {{\varepsilon}_{z,z}}&=\displaystyle -\frac{{{\varepsilon}_{x,x}}\cdot \lambda}{2\cdot \mu+2\cdot \lambda}\end{array}</math>. | ||
|code= | |code= | ||
<syntaxhighlight lang="matlab" line start=1> | <syntaxhighlight lang="matlab" line start=1> | ||
Zeile 201: | Zeile 201: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
}} | }} | ||
<!--------------------------------------------------------------------------------> | <!--------------------------------------------------------------------------------> | ||
== tmp == | |||
{{MyCodeBlock|title=Displacement Variables | {{MyCodeBlock|title=Displacement Variables | ||
|text=Text | |text=Text |
Version vom 23. Februar 2021, 10:20 Uhr
Aufgabenstellung
In dieser Aufgabe starten wir von "first principles" - hier das Prinzip der virtuellen Verrückungen - und entwicklen die Bewegungsgleichunge für einen schlanken Stab unter Langskräft und Biegemoment.

Gesucht sind die Differentialgleichungen des statischen Gleichgewichts für den schlanken Stab mit Rechteck-Querschnitt unter Längs- und Querkraft, ausgehend von der Virtuellen Formänderungsenergie δΠ.
Wir finden so die bekannten Differentialbeziehungen für das Timoshenko / Euler-Bernoulli-Modell eines Balkens.
Lösung mit Maxima
Wie alle zentralen Begriffe der Elastizitätstheorie ineinandergreifen, um die virtuelle Formänderungsenergie für den Euler-Bernoulli-Balken zu ermitteln, zeigt diese Aufgabe.
Header
Hier kommen
- das Hook'sche Gesetz in seiner allgemeinen, 3D-Fassung,
- die allgemeinen Verschiebungs-Verzerrungs-Bedingungen,
- die klassischen Annahmen zur Theorie von Stäben zum Einsatz sowie
- die Gleichgewichtsbedingungen nach dem Prinzip der virtuellen Verrückungen.
zum Einsatz.
Declarations
Wir brauchen das volle Instrumentarium der Elastizitätstheorie - angefangen bei einfachen Abkürzungen wie der Querschnittsfläche A bis zu den Flächenmomenten 2. Grades Iy und Iz:
über Lame's Konstante
- ,
und dem linearen Werkstoffgesetz (Spannungs-Dehnungs-Beziehung / Hook's Gesetz)
- .
Und schließlich wollen wir die Verzerrungs-Verscheibungs-Beziehung für einen materiellen Punkt P angeben. Grundlage ist die Verschiebung eines Punkte P=[x,y,z] und die gesuchten Koeffizienten u, v, w der Verschiebung in die drei Raumrichtungen
- ,
Die Koeffizienten u(x,y,z), v(x,y,z), w(x,y,z) des Ortsvektors rP beschreiben dabei das Verscheibungsfeld des Balkens. Wir erhalten mit den allgemeinen Komponenten u, v und w des Verschiebungsfeldes
die Verzerrungen allgemein zu
- .
Damit das "schöner" aussieht,, kürzen wir im Folgenden ab
und erhalten als Verzerrungs-Verscheibungs-Beziehung
- .
Für unser Problem suchen wir jetzt ein konkretes Verschiebungsfeld, das unseren Anforderungen an das Problem genügt.
Euler Rotation
Wir definieren später ein Modell, bei dem Querschnitte um eine Achse senkrecht zur Papierebene kippen kann. Das beschreiben wir mit der linearisierten Euler-Rotation:
- ,
die für arg << 1 gilt.
Stress-Strain-Relations for a Rod
Die Komponenten des Spannungs- und Verzerrungs-Tensors fassen in den Matrizen
und
zusammen - und damit können wir nun anfangen zu arbeiten.
Die wichtigsten Annahmen zu Spannungen in einem einfachen Stab mit symmetrischen Profil sind:
Die ersten beiden Zeilen sind klar: die Hauptspannungen senkrecht zur Stab-Längsachse verschwinden. Ausnahmen machen hier nur Stäbe, die z.B. durch großen Drücke belastet sind wie bei Bohrsträngen.

Die Zeilen 3 und 4 gehören zu Spannungen, die einen Querschnitt in der skizzierten Weise verformen (schweren) würden. Das passiert bei symmetrischen Querschnitten wie hier einem Rechteck-Querschnitt nicht.
Mit diesen vier Annahmen können wir aus der Beziehung
vier Gleichungen herausnehmen und wählen
- .
tmp
Displacement Variables
Text
Virtual Strain Energy
Text
Timoshenko-Beam
Text
Euler-Bernoulli-Balken
Text
Links
- ...
Literature
- ...