Gelöste Aufgaben/StaF: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 58: Zeile 58:
\end{pmatrix}
\end{pmatrix}
</math>
</math>
Hier kommt jetzt irgendein Text.


<math>
::<math>
</math
Some Text
 
</math>
==tmp==


<!-------------------------------------------------------------------------------->
<!-------------------------------------------------------------------------------->
Zeile 73: Zeile 73:
}}
}}


<table class="wikitable mw-collapsible" style="background-color:white; float: none; margin-right:14px;">
<table class="wikitable mw-collapsible mw-collapsed" style="background-color:white; float: none; margin-right:14px;">
<tr><th>Element-Steigigkeitsmatrizen mit globalen Koordinaten</th></tr>
<tr><th>Element #1</th></tr>
<tr><th>Element #1</th></tr>
<tr><td>
<tr><td>
<math>
<math>
Zeile 89: Zeile 89:
<tr><td>
<tr><td>
<math>
<math>
{k_2} = \begin{pmatrix}\frac{{{A}^{2}} E \eta +3 {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & -\left( \frac{{{A}^{2}} E \eta +3 {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\\
\frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & \frac{3 {{A}^{2}} E \eta +{\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & -\left( \frac{3 {{A}^{2}} E \eta +{\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\\
\frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & \frac{{{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta }{6 {\ell_0}}\\
-\left( \frac{{{A}^{2}} E \eta +3 {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & -\left( \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta +3 {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & -\left( \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right) \\
-\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & -\left( \frac{3 {{A}^{2}} E \eta +{\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & \frac{3 {{A}^{2}} E \eta +{\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right) \\
\frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta }{3 {\ell_0}}\end{pmatrix}
</math>
</math>
</td></tr>
</td></tr>
Zeile 94: Zeile 100:
<tr><td>
<tr><td>
<math>
<math>
{k_3} = \begin{pmatrix}\frac{{{A}^{2}} E \eta +3 {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & -\left( \frac{{{A}^{2}} E \eta +3 {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\\
-\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & \frac{3 {{A}^{2}} E \eta +{\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & -\left( \frac{3 {{A}^{2}} E \eta +{\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right) \\
\frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & \frac{{{A}^{2}} E \eta }{6 {\ell_0}}\\
-\left( \frac{{{A}^{2}} E \eta +3 {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & -\left( \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta +3 {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & -\left( \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right) \\
\frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & -\left( \frac{3 {{A}^{2}} E \eta +{\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}}\right)  & \frac{3 {{A}^{2}} E \eta +{\ell_{0}^{2}} A E}{4 {\ell_{0}^{3}}} & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\\
\frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{4 {\ell_{0}^{2}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {\ell_{0}^{2}}} & \frac{{{A}^{2}} E \eta }{3 {\ell_0}}\end{pmatrix}
</math>
</math>
</td></tr>
</td></tr>
<tr><th>Element #1</th></tr>
<tr><th>Element #4</th></tr>
<tr><td>
<tr><td>
<math>
{k_4} = \begin{pmatrix}\frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}} & 0 & \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}} & -\left( \frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}}\right)  & 0 & \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\\
</math>
0 & \frac{A E}{{\ell_0}} & 0 & 0 & -\left( \frac{A E}{{\ell_0}}\right)  & 0\\
\frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}} & 0 & \frac{{{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right)  & 0 & \frac{{{A}^{2}} E \eta }{6 {\ell_0}}\\
-\left( \frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}}\right)  & 0 & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}} & 0 & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right) \\
0 & -\left( \frac{A E}{{\ell_0}}\right)  & 0 & 0 & \frac{A E}{{\ell_0}} & 0\\
\frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}} & 0 & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right)  & 0 & \frac{{{A}^{2}} E \eta }{3 {\ell_0}}\end{pmatrix}
</td></tr>
</td></tr>
</table>
</table>

Version vom 21. Oktober 2024, 15:01 Uhr


Aufgabenstellung

SOME TEXT


Caption

Gesucht ist "SOME EXPLANATION"


Lösung mit Maxima

Lorem Ipsum ....

(2A2Eη300(2A2Eη02)0A2Eη3000002A2Eη30(A2Eη402)(3A2Eη402)A2Eη60(A2Eη202)0A2Eη60(2A2Eη02)(A2Eη402)A2Eη+302AE203+8A2Eη030(2A2Eη02)(A2Eη+302AE403)3A2Eη302AE403A2Eη4020(3A2Eη402)03A2Eη+02AE203+2AE0(3A2Eη202)3A2Eη302AE403(3A2Eη+02AE403)(3A2Eη402)A2Eη30A2Eη60(2A2Eη02)(3A2Eη202)4A2Eη30(A2Eη402)3A2Eη402A2Eη600(A2Eη202)(A2Eη+302AE403)3A2Eη302AE403(A2Eη402)A2Eη+302AE403+A2Eη03(3A2Eη302AE403)(3A2Eη402)003A2Eη302AE403(3A2Eη+02AE403)3A2Eη402(3A2Eη302AE403)3A2Eη+02AE403+AE03A2Eη4020A2Eη60A2Eη402(3A2Eη402)A2Eη60(3A2Eη402)3A2Eη4022A2Eη30)(W1,0U1,0Φ1,0W2,0U2,0Φ2,0W3,0U3,0Φ3,0W4,0U4,0Φ4,0)=(00000F00)

Hier kommt jetzt irgendein Text.

SomeText

Title

Text




Element-Steigigkeitsmatrizen mit globalen Koordinaten
Element #1

k1=(8A2Eη0302A2Eη02(8A2Eη03)02A2Eη0202AE000(2AE0)02A2Eη0202A2Eη30(2A2Eη02)0A2Eη30(8A2Eη03)0(2A2Eη02)8A2Eη030(2A2Eη02)0(2AE0)002AE002A2Eη020A2Eη30(2A2Eη02)02A2Eη30)

Element #2

k2=(A2Eη+302AE4033A2Eη302AE403A2Eη402(A2Eη+302AE403)(3A2Eη302AE403)A2Eη4023A2Eη302AE4033A2Eη+02AE4033A2Eη402(3A2Eη302AE403)(3A2Eη+02AE403)3A2Eη402A2Eη4023A2Eη402A2Eη30(A2Eη402)(3A2Eη402)A2Eη60(A2Eη+302AE403)(3A2Eη302AE403)(A2Eη402)A2Eη+302AE4033A2Eη302AE403(A2Eη402)(3A2Eη302AE403)(3A2Eη+02AE403)(3A2Eη402)3A2Eη302AE4033A2Eη+02AE403(3A2Eη402)A2Eη4023A2Eη402A2Eη60(A2Eη402)(3A2Eη402)A2Eη30)

Element #3

k3=(A2Eη+302AE403(3A2Eη302AE403)A2Eη402(A2Eη+302AE403)3A2Eη302AE403A2Eη402(3A2Eη302AE403)3A2Eη+02AE403(3A2Eη402)3A2Eη302AE403(3A2Eη+02AE403)(3A2Eη402)A2Eη402(3A2Eη402)A2Eη30(A2Eη402)3A2Eη402A2Eη60(A2Eη+302AE403)3A2Eη302AE403(A2Eη402)A2Eη+302AE403(3A2Eη302AE403)(A2Eη402)3A2Eη302AE403(3A2Eη+02AE403)3A2Eη402(3A2Eη302AE403)3A2Eη+02AE4033A2Eη402A2Eη402(3A2Eη402)A2Eη60(A2Eη402)3A2Eη402A2Eη30)

Element #4

{k_4} = \begin{pmatrix}\frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}} & 0 & \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}} & -\left( \frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}}\right) & 0 & \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\\ 0 & \frac{A E}Vorlage:\ell 0 & 0 & 0 & -\left( \frac{A E}Vorlage:\ell 0\right) & 0\\ \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}} & 0 & \frac{{{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right) & 0 & \frac{{{A}^{2}} E \eta }{6 {\ell_0}}\\ -\left( \frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}}\right) & 0 & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right) & \frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}} & 0 & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right) \\ 0 & -\left( \frac{A E}Vorlage:\ell 0\right) & 0 & 0 & \frac{A E}Vorlage:\ell 0 & 0\\ \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}} & 0 & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right) & 0 & \frac{{{A}^{2}} E \eta }{3 {\ell_0}}\end{pmatrix}


Links

  • ...

Literature

  • ...