Gelöste Aufgaben/W8Zt: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 166: | Zeile 166: | ||
{{MyCodeBlock|title=Post-Process | {{MyCodeBlock|title=Post-Process | ||
|text=Text | |text=Text | ||
|code= | |||
<syntaxhighlight lang="lisp" line start=1> | |||
1+1 | |||
</syntaxhighlight> | |||
}} | |||
<!--------------------------------------------------------------------------------> | |||
{{MyCodeBlock|title=Post-Process - Vergleich mit analytischer Lösung | |||
|text= | |||
Und wir schauen uns für ''α=1/2'' die Verschiebung der Ritz- und analytischen-Lösung im Vergleich an: | |||
[[Datei:W8Zt-32.png|mini|none|Vergleich der Biegelinie für analytische / numerische Lösung]] | |||
|code= | |code= | ||
<syntaxhighlight lang="lisp" line start=1> | <syntaxhighlight lang="lisp" line start=1> | ||
Zeile 184: | Zeile 196: | ||
[[Datei:W8Zt-11.png|mini|Koordinaten]] | [[Datei:W8Zt-11.png|mini|Koordinaten]] | ||
[[Datei:W8Zt-01.png|mini|Lageplan]] | [[Datei:W8Zt-01.png|mini|Lageplan]] | ||
Version vom 19. April 2021, 09:52 Uhr
Aufgabenstellung
Zu den tabellierten Standardlösungen für den Euler-Bernoulli-Blaken berechnen wir eine Näherungslösung für einen beidseitig gelenkig gelagerten Euler-Bernoulli-Balken:
Gesucht ist eine Lösung in Anlehnung an das Verfahren von Ritz - bei dem wir mit Formfunktionen arbeiten, die sich über die gesamte Balkenlänge erstrecken, wir aber im dann mit dem Prinzip der virtuellen Verrückungen arbeiten.
Üblich ist bei Verfahren von Rayleigh-Ritz nämlich sonst das Prinzip vom Minimum der Potentiellen Energie.
Lösung mit Maxima
Mit dem Föppl-Symbol "<>",
, und
ist die analytische Lösung:
.
Bei dieser Lösung hat die unabhängige Koordinate x ihren Ursprung in A - wir verwenden unten einen anderen Ursprung!
Mit den passenden Ansatzfunktionen nach Ritz berechnen Sie eine Näherungslösung des Problems.
tmp
Hier arbeiten wir mit Maxima.
Header
Text
1+1
tmp
Wir definieren zunächst die Symbole für die virtuellen Arbeiten und die virtuellen Verrückungen - die in Maxima nicht standardmäßig verfügbar sind.
Die Annahme ℓ>0 brauchen wir, damit Maxima Wurzel-Ausdrücke mit diesem Parameter richtig vereinfachen kann.
Declarations
Text
1+1
tmp
Als unabhängige Koordinaten des Balkens wählen wir "x" entlang der Neutralen Faser mit Ursprung in der Mitte zwischen A und B.
Wir entscheiden uns zunächst für zwei abhängige Koordinaten des Systems und deren Variationen (δ)
und wählen V und ψ als die Verschiebung und Verdrehung (=Neigung) des Querschnitts im Punkt x=0 des Balkens.
Jetzt brauchen wir zwei Ansatzfunktionen, die unseren Koordinaten V und ψ entsprechen. Wir wollen diese beiden anschaulich denken können - wir wählen einfache Polynome: eine achsensymmetrische und eine punktsymmetrische Funktion mit den noch unbestimmten Konstanten cij:
Diese beiden Funktionen müssen
- Geometrische Randbedingungen erfüllen und
- jeweils mit den Koordinaten V und ψ verknüpft werden.
Die zugehörigen Gleichungen (= die Randbedingungen) sind
- und
mit der Lösung
Anstatt der exakten, bekannten Lösung, verwenden wir in diesem Näherungsansatz also nun die Funktion
,
die beiden Koordinaten V und ψ müssen wir noch bestimmen. Die Funktionen, die zu V und ψ gehören, sind rechts aufgetragen:
Klar ist: die exakte Lösung dieses Lastfalls ist eine Funktion, die im Querkraftverlauf am Kraftangriffspunkt (x=a - ℓ/2) einen Sprung hat. Dagegen ist der Querkraftverlauf unserer Näherungslösung stetig differenzierbar und obendrauf noch konstant!
Formfunctions
Text
1+1
tmp
Mit dem Prinzip der virtuellen Verrückungen ist die Gleichgewichtsbedingung immer
Mit den Beiträgen
und dem Einsetzen der Ansatzfunktionen und deren Variation finden wir
Achtung: hier bezeichnet nun α=-1 den Punkt A, α=+1 den Punkt B.
Diese virtuelle Arbeit des Gesamtsystems spalten wir jetzt nach den virtuellen Verrückungen auf und erhalten zwei unabhängige Gleichungen in V und ψ:
Und die können wir leicht lösen:
Equilibrium Conditions
Text
1+1
tmp
In Matrix-Schreibweise stellen wir diesen Ausdruck gewöhnliches lineares Gleichungssystem dar:
mit
sieht das Gleichungssystem wieder handlich aus, die Lösung ist:
⚠ Und wissen Sie auch ....: |
... warum A hier eine Diagonalmatrix ist? Schauen Sie sich die Koeffizienten bzgl. von α an - was erkennen Sie? |
Solve
Text
1+1
tmp
Die Lösung normieren wir noch für das Post-Processing mit der analytischen maximalen Auslenkung im symmetrischen Belastungsfall (wenn F in der Mitte zwischen A und B angreift):
Wir tragen sie für verschiedene Kraft-Angriffspunkte (α=-1,...α=+1) auf:
Post-Process
Text
1+1
Post-Process - Vergleich mit analytischer Lösung
Und wir schauen uns für α=1/2 die Verschiebung der Ritz- und analytischen-Lösung im Vergleich an:
1+1
<Links
- ...
Literature
- ...