Gelöste Aufgaben/W8Zt: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 31: Zeile 31:
==tmp==
==tmp==


<!-------------------------------------------------------------------------------->
Hier arbeiten wir mit [[Werkzeuge/Software/Maxima|Maxima]].<!-------------------------------------------------------------------------------->
 
{{MyCodeBlock|title=Header
{{MyCodeBlock|title=Header
|text=Text
|text=Text
Zeile 42: Zeile 43:
==tmp==
==tmp==


<!-------------------------------------------------------------------------------->
Wir definieren zunächst die Symbole für die virtuellen Arbeiten und die virtuellen Verrückungen - die in Maxima nicht standardmäßig verfügbar sind.
 
Die Annahme ''ℓ>0'' brauchen wir, damit Maxima Wurzel-Ausdrücke mit diesem Parameter richtig vereinfachen kann.<!-------------------------------------------------------------------------------->
 
 
{{MyCodeBlock|title=Declarations
{{MyCodeBlock|title=Declarations
|text=Text
|text=Text
Zeile 53: Zeile 58:
==tmp==
==tmp==


<!-------------------------------------------------------------------------------->
Als [[Sources/Lexikon/unabhängige Koordinaten|unabhängige Koordinaten]] des Balkens wählen wir "''x''" entlang der Neutralen Faser mit Ursprung in der Mitte zwischen A und B.
 
Wir entscheiden uns zunächst für zwei abhängige Koordinaten des Systems und deren Variationen (''δ'')
 
<math>
\underline{Q} = \left(\begin{array}{c}V\\\Psi\end{array}\right), \delta\underline{Q} = \left(\begin{array}{c}\delta V\\\delta \Psi\end{array}\right), </math>
 
und wählen ''V'' und ''ψ''  als die Verschiebung und Verdrehung (=Neigung) des Querschnitts im Punkt ''x''=0 des Balkens.
 
Jetzt brauchen wir zwei [[Sources/Lexikon/Ansatzfunktion|Ansatzfunktionen]], die unseren Koordinaten ''V'' und ''ψ'' entsprechen. Wir wollen diese beiden anschaulich denken können - wir wählen einfache Polynome: eine achsensymmetrische und eine punktsymmetrische Funktion mit den noch unbestimmten Konstanten ''c<sub>ij</sub>'':
 
* <math>{{v}_{1}}\left( x\right) :={{c}_{1,2}}\cdot {{x}^{2}}+{{c}_{1,0}}</math>
* <math>v_{2} (x) := c_{2,3} \cdot x^3+c_{2,1} \cdot x</math>
 
Diese beiden Funktionen müssen
 
# [[Sources/Lexikon/Geometrische Randbedingungen|Geometrische Randbedingungen]] erfüllen und
# jeweils mit den Koordinaten ''V'' und ''ψ''  verknüpft werden.
 
Die zugehörigen Gleichungen (= die Randbedingungen) sind
 
* <math>{{c}_{1,0}}=V,\frac{\displaystyle {{c}_{1,2}}\cdot {{\ell}^{2}}}{\displaystyle 4}+{{c}_{1,0}}=0</math> und
* <math>{{c}_{2,1}}=\Psi,\frac{\displaystyle {{c}_{2,3}}\cdot {{\ell}^{3}}}{\displaystyle 8}+\frac{\displaystyle {{c}_{2,1}}\cdot \ell}{\displaystyle 2}=0</math>
 
mit der Lösung
 
<math>{{c}_{1,0}}=V,{{c}_{1,2}}=-\frac{\displaystyle 4\cdot V}{{{\displaystyle \ell}^{2}}},{{c}_{2,1}}=\Psi,{{c}_{2,3}}=-\frac{\displaystyle 4\cdot \Psi}{\displaystyle {{\ell}^{2}}}</math>[[Datei:W8Zt-12.png|mini|Trial-Functions]]Anstatt der exakten, bekannten Lösung, verwenden wir in diesem Näherungsansatz also nun die Funktion
 
<math>\mathrm{w}\left( x\right) =-\frac{\displaystyle 4\cdot {{x}^{2}}\cdot V}{{\displaystyle {\ell}^{2}}}+V-\frac{\displaystyle 4\cdot \Psi\cdot {{x}^{3}}}{{\displaystyle {\ell}^{2}}}+\Psi\cdot x</math>,
 
die beiden Koordinaten ''V'' und ''ψ'' müssen wir noch bestimmen. Die Funktionen, die zu  ''V'' und ''ψ'' gehören, sind rechts aufgetragen:
 
Klar ist: die exakte Lösung dieses Lastfalls ist eine Funktion, die im [[Sources/Lexikon/Querkraftverlauf|Querkraftverlauf]] am Kraftangriffspunkt (''x=a - ℓ/2'') einen Sprung hat. Dagegen ist der Querkraftverlauf unserer Näherungslösung stetig differenzierbar und obendrauf noch konstant!<!-------------------------------------------------------------------------------->
 
 
{{MyCodeBlock|title=Formfunctions
{{MyCodeBlock|title=Formfunctions
|text=Text
|text=Text
Zeile 64: Zeile 103:
==tmp==
==tmp==


<!-------------------------------------------------------------------------------->
Mit dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip der virtuellen Verrückungen|Prinzip der virtuellen Verrückungen]] ist die Gleichgewichtsbedingung immer
 
<math>\delta W=\delta A-\delta \Pi</math>
 
Mit den Beiträgen
 
<math>\delta A=F\cdot \delta w\left( {{x}_{F}}\right) ,\delta\Pi=\int_{-\frac{\ell}{2}}^{\frac{\ell}{2}}\left( \frac{{{d}^{2}}}{d\,{{x}^{2}}}\cdot w\left( x\right) \right) \cdot \left( \frac{{{d}^{2}}}{d\,{{x}^{2}}}\cdot \delta w \left( x\right) \right) dx\cdot EI</math>
 
und dem Einsetzen der Ansatzfunktionen und deren Variation finden wir
 
<math>\begin{array}{ll}\delta W = & -\frac{\displaystyle \left( 64\cdot EI \cdot V+ ({{\alpha}^{2}}-1) \cdot {{\ell}^{3}}\cdot F\right)}{\displaystyle {\ell}^{3}} \cdot \delta V  \\ &+ \frac{\displaystyle {{\ell}^{2}}\cdot \left( \alpha \cdot ({{\alpha}^{2}}-1) \cdot {{\ell}^{2}}\cdot F+96\cdot \Psi\cdot EI \right)}{\displaystyle 2\cdot {{\ell}^{3}}} \cdot \delta\Psi \end{array}</math>
 
Achtung: hier bezeichnet nun ''α=-1'' den Punkt A, ''α=+1'' den Punkt B.
 
Diese virtuelle Arbeit des Gesamtsystems spalten wir jetzt nach den [[Sources/Lexikon/virtuelle Verrückung|virtuellen Verrückungen]] auf und erhalten zwei unabhängige Gleichungen in ''V'' und ''ψ'':
 
<math>\begin{array}{cc}-\frac{\displaystyle \left( {{\alpha}^{2}}-1\right) \cdot {{\ell}^{3}}\cdot F+64\cdot EI \cdot V}{\displaystyle {{\ell}^{3}}}&=0\\-\frac{\displaystyle 96\cdot \Psi\cdot EI+\left( {{\alpha}^{3}}-\alpha\right) \cdot {{\ell}^{2}}\cdot F}{\displaystyle  2\cdot \ell}&=0\end{array}</math>
 
Und die können wir leicht lösen:<!-------------------------------------------------------------------------------->
 
 
{{MyCodeBlock|title=Equilibrium Conditions
{{MyCodeBlock|title=Equilibrium Conditions
|text=Text
|text=Text
Zeile 75: Zeile 134:
==tmp==
==tmp==


<!-------------------------------------------------------------------------------->
In Matrix-Schreibweise stellen wir diesen Ausdruck [[Werkzeuge/Lösungsbausteine der Mathematik/Gewöhnliche lineare Gleichungssysteme|gewöhnliches lineares Gleichungssystem]] dar:
 
<math>\underline{\underline{A}}\cdot\underline{x}=\underline{b}</math>
 
mit
 
<math>\underline{\underline{A}}=EI \cdot \begin{pmatrix}-\frac{\displaystyle 64}{\displaystyle {{\ell}^{3}}} & 0\\ 0 & -\frac{\displaystyle 48}{\displaystyle \ell}\end{pmatrix},\underline{b}=F\cdot (\alpha^2-1)\cdot \begin{pmatrix}{1}\\ \frac{\displaystyle \alpha\cdot \ell}{\displaystyle 2}\end{pmatrix}</math>
 
sieht das Gleichungssystem wieder handlich aus, die Lösung ist:
 
<math>V=-\frac{\displaystyle \left( {{\alpha}^{2}}-1\right) \cdot {{\ell}^{3}}}{\displaystyle 64\cdot EI}\cdot F,\;\;\;\Psi=-\frac{\displaystyle \left( {{\alpha}^{3}}-\alpha\right) \cdot {{\ell}^{2}}}{\displaystyle 96\cdot EI}\cdot F</math>
 
{{MyAttention|title=Und wissen Sie auch ....|text=... warum A hier eine Diagonalmatrix ist? Schauen Sie sich die Koeffizienten bzgl. von ''α'' an - was erkennen Sie?}}<!-------------------------------------------------------------------------------->
 
 
{{MyCodeBlock|title=Solve
{{MyCodeBlock|title=Solve
|text=Text
|text=Text
Zeile 86: Zeile 159:
==tmp==
==tmp==


<!-------------------------------------------------------------------------------->
Die Lösung normieren wir noch für das Post-Processing mit der analytischen maximalen Auslenkung im symmetrischen Belastungsfall (wenn ''F'' in der Mitte zwischen A und B angreift):
 
<math>s = \frac{\displaystyle \ell^3}{\displaystyle 48 EI}\cdot F</math>
 
Wir tragen sie für verschiedene Kraft-Angriffspunkte (''α=-1,...α=+1'') auf:[[Datei:W8Zt-31.png|mini|Parameterstudie: Auslenkung ''w(a)'' des Kraft-Einleitungspunktes|alternativtext=|ohne]]<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Post-Process
{{MyCodeBlock|title=Post-Process
|text=Text
|text=Text
Zeile 105: Zeile 182:




[[Datei:W8Zt-31.png|mini|Parameterstudie: Auslenkung ''w(a)'' des Kraft-Einleitungspunktes]]
[[Datei:W8Zt-11.png|mini|Koordinaten]]
[[Datei:W8Zt-11.png|mini|Koordinaten]]
[[Datei:W8Zt-12.png|mini|Trial-Functions]]
[[Datei:W8Zt-01.png|mini|Lageplan]]
[[Datei:W8Zt-01.png|mini|Lageplan]]
[[Datei:W8Zt-32.png|mini|Vergleich der Biegelinie für analytische / numerische Lösung]]
[[Datei:W8Zt-32.png|mini|Vergleich der Biegelinie für analytische / numerische Lösung]]

Version vom 19. April 2021, 09:51 Uhr


Aufgabenstellung

Zu den tabellierten Standardlösungen für den Euler-Bernoulli-Blaken berechnen wir eine Näherungslösung für einen beidseitig gelenkig gelagerten Euler-Bernoulli-Balken:


Caption

Gesucht ist eine Lösung in Anlehnung an das Verfahren von Ritz - bei dem wir mit Formfunktionen arbeiten, die sich über die gesamte Balkenlänge erstrecken, wir aber im dann mit dem Prinzip der virtuellen Verrückungen arbeiten.

Üblich ist bei Verfahren von Rayleigh-Ritz nämlich sonst das Prinzip vom Minimum der Potentiellen Energie.

Lösung mit Maxima

Mit dem Föppl-Symbol "<>",

,  und

ist die analytische Lösung:

.

Bei dieser Lösung hat die unabhängige Koordinate x ihren Ursprung in A - wir verwenden unten einen anderen Ursprung!

Mit den passenden Ansatzfunktionen nach Ritz berechnen Sie eine Näherungslösung des Problems.

tmp

Hier arbeiten wir mit Maxima.

Header

Text


1+1




tmp

Wir definieren zunächst die Symbole für die virtuellen Arbeiten und die virtuellen Verrückungen - die in Maxima nicht standardmäßig verfügbar sind.

Die Annahme ℓ>0 brauchen wir, damit Maxima Wurzel-Ausdrücke mit diesem Parameter richtig vereinfachen kann.


Declarations

Text


1+1




tmp

Als unabhängige Koordinaten des Balkens wählen wir "x" entlang der Neutralen Faser mit Ursprung in der Mitte zwischen A und B.

Wir entscheiden uns zunächst für zwei abhängige Koordinaten des Systems und deren Variationen (δ)

und wählen V und ψ  als die Verschiebung und Verdrehung (=Neigung) des Querschnitts im Punkt x=0 des Balkens.

Jetzt brauchen wir zwei Ansatzfunktionen, die unseren Koordinaten V und ψ entsprechen. Wir wollen diese beiden anschaulich denken können - wir wählen einfache Polynome: eine achsensymmetrische und eine punktsymmetrische Funktion mit den noch unbestimmten Konstanten cij:

Diese beiden Funktionen müssen

  1. Geometrische Randbedingungen erfüllen und
  2. jeweils mit den Koordinaten V und ψ  verknüpft werden.

Die zugehörigen Gleichungen (= die Randbedingungen) sind

  • und

mit der Lösung

Trial-Functions

Anstatt der exakten, bekannten Lösung, verwenden wir in diesem Näherungsansatz also nun die Funktion

,

die beiden Koordinaten V und ψ müssen wir noch bestimmen. Die Funktionen, die zu V und ψ gehören, sind rechts aufgetragen:

Klar ist: die exakte Lösung dieses Lastfalls ist eine Funktion, die im Querkraftverlauf am Kraftangriffspunkt (x=a - ℓ/2) einen Sprung hat. Dagegen ist der Querkraftverlauf unserer Näherungslösung stetig differenzierbar und obendrauf noch konstant!


Formfunctions

Text


1+1




tmp

Mit dem Prinzip der virtuellen Verrückungen ist die Gleichgewichtsbedingung immer

Mit den Beiträgen

und dem Einsetzen der Ansatzfunktionen und deren Variation finden wir

Achtung: hier bezeichnet nun α=-1 den Punkt A, α=+1 den Punkt B.

Diese virtuelle Arbeit des Gesamtsystems spalten wir jetzt nach den virtuellen Verrückungen auf und erhalten zwei unabhängige Gleichungen in V und ψ:

Und die können wir leicht lösen:


Equilibrium Conditions

Text


1+1




tmp

In Matrix-Schreibweise stellen wir diesen Ausdruck gewöhnliches lineares Gleichungssystem dar:

mit

sieht das Gleichungssystem wieder handlich aus, die Lösung ist:

Und wissen Sie auch ....:
... warum A hier eine Diagonalmatrix ist? Schauen Sie sich die Koeffizienten bzgl. von α an - was erkennen Sie?


Solve

Text


1+1




tmp

Die Lösung normieren wir noch für das Post-Processing mit der analytischen maximalen Auslenkung im symmetrischen Belastungsfall (wenn F in der Mitte zwischen A und B angreift):

Wir tragen sie für verschiedene Kraft-Angriffspunkte (α=-1,...α=+1) auf:

Parameterstudie: Auslenkung w(a) des Kraft-Einleitungspunktes

Post-Process

Text


1+1





<Links

  • ...

Literature

  • ...


Koordinaten
Lageplan
Vergleich der Biegelinie für analytische / numerische Lösung