Gelöste Aufgaben/UEBP: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 24: Zeile 24:


* dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip vom Minimum der Potentiellen Energie|Prinzip vom Minimum der Potentiellen Energie]].
* dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip vom Minimum der Potentiellen Energie|Prinzip vom Minimum der Potentiellen Energie]].
[[Datei:UEBP-31.png|mini|Verläufe von ''w(x), ϕ(x)'']]
[[Datei:UEBP-32.png|mini|Vergleich analytische / numerische Lösung für ''w(x)'']]
[[Datei:UEBP-33.png|mini|Vergleich analytische / numerische Lösung für das Schnittmoment ''M(x)'']]

Version vom 19. April 2021, 06:59 Uhr


Aufgabenstellung

Diese Problemstellung liefert einen Näherungsansatz für eine Standardlösung zum Euler-Bernoulli-Balken.

Der Euler-Bernoulli-Balken AB wird durch ein Moment M zwischen den beiden gelenkigen Lagern belastet. 


Lageplan

Gesucht ist eine Lösung für die Biegelinie mit dem Ansatz von Ritz und zwei Trial-Funktionen.

Im Vergleich zu UEBO, das die gleiche Aufgabenstellung hat - arbeiten wir hier mit Ansatzfunktionen in zwei Sektionen wie bei der FEM. Nur das Gleichgewichts-Prinzip bliebt das Gleicht: das Prinzip vom Minimum der Potentiellen Energie.

Lösung mit Maxima

Beim Verfahren von Ritz arbeiten wir mit


Verläufe von w(x), ϕ(x)
Vergleich analytische / numerische Lösung für w(x)
Vergleich analytische / numerische Lösung für das Schnittmoment M(x)