Sources/Lexikon/Euler-Bernoulli-Balken/Standard-Lösungen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 36: | Zeile 36: | ||
<tr><td>[[Datei:EBB-load-case-05.png|alternativtext=|rahmenlos|200x200px]]</td><td><math>\begin{array}{ll}&\displaystyle \frac{M\; \ell}{6} \left( 3\cdot {{\alpha}^{2}}-6\cdot \alpha+2 \right)\\=& \displaystyle -\frac{M\; \ell}{24} \text{ für }\alpha=1/2, \xi= 0\end{array}</math></td><td><math>\displaystyle \frac{M\; \ell}{6} \left(3\,\alpha^2-1\right)</math></td><td><math>\displaystyle \frac{M\; \ell^2}{6} \left( | <tr><td>[[Datei:EBB-load-case-05.png|alternativtext=|rahmenlos|200x200px]]</td><td><math>\begin{array}{ll}&\displaystyle \frac{M\; \ell}{6} \left( 3\cdot {{\alpha}^{2}}-6\cdot \alpha+2 \right)\\=& \displaystyle -\frac{M\; \ell}{24} \text{ für }\alpha=1/2, \xi= 0\end{array}</math></td><td><math>\displaystyle \frac{M\; \ell}{6} \left(3\,\alpha^2-1\right)</math></td><td><math>\displaystyle \frac{M\; \ell^2}{6} \left( | ||
\xi^3+\xi (2-6 \alpha+3 \alpha^2) - 3\cdot <\xi-\alpha>^2\right)</math></td><td><math>\displaystyle \frac{M\; \ell^2}{72\;\sqrt{3}} \text{ für } \alpha = 1/2</math>{{MyAttention|title=Achtung|text=! Das ist das Maximum der Auslenkung für α=1/2, | \xi^3+\xi (2-6 \alpha+3 \alpha^2) - 3\cdot <\xi-\alpha>^2\right)</math></td><td><math>\displaystyle \frac{M\; \ell^2}{72\;\sqrt{3}} \text{ für } \alpha = 1/2</math>{{MyAttention|title=Achtung|text=! Das ist das Maximum der Auslenkung für α=1/2, | ||
nicht das absolute Maximum !}}</td></tr> | nicht das absolute Maximum !}}</td></tr></table> | ||
</table>{{MyCodeBlock|title=Maxima Source Code|text=Zum Nachrechnen steht hier der Quellcodes des CAS.|code=/*******************************************************/ | |||
{{MyCodeBlock| | |||
title=Maxima Source Code | |||
|text=Zum Nachrechnen steht hier der Quellcodes des CAS. | |||
|code= | |||
/*******************************************************/ | |||
/* MAXIMA script */ | /* MAXIMA script */ | ||
/* version: wxMaxima 15.08.2 */ | /* version: wxMaxima 15.08.2 */ | ||
Zeile 46: | Zeile 51: | ||
/* */ | /* */ | ||
/*******************************************************/ | /*******************************************************/ | ||
feld: makelist(w[i](x) = sum(C[i,j]*x^j,j,0,3),i,1,2); | feld: makelist(w[i](x) = sum(C[i,j]*x^j,j,0,3),i,1,2); | ||
BC : [subst([x=0], subst(feld,w[1](x)) )=0, | BC : [subst([x=0], subst(feld,w[1](x)) )=0, | ||
subst([x=0],diff(subst(feld,w[1](x)),x,2))=0, | subst([x=0],diff(subst(feld,w[1](x)),x,2))=0, | ||
Zeile 57: | Zeile 62: | ||
subst([x=l], subst(feld,w[2](x)) )=0, | subst([x=l], subst(feld,w[2](x)) )=0, | ||
subst([x=l],diff(subst(feld,w[2](x)),x,2))=0]; | subst([x=l],diff(subst(feld,w[2](x)),x,2))=0]; | ||
IC : flatten(makelist(makelist(C[i,j],j,0,3),i,1,2)); | IC : flatten(makelist(makelist(C[i,j],j,0,3),i,1,2)); | ||
sol[1]: solve(BC,IC)[1]; | sol[1]: solve(BC,IC)[1]; | ||
sol[2]: ratsimp(subst([x=xi*l,a=alpha*l],subst(sol[1],feld))); | sol[2]: ratsimp(subst([x=xi*l,a=alpha*l],subst(sol[1],feld))); | ||
/* foeppel - part */ | /* foeppel - part */ | ||
expand(subst(sol[2],w[2](xi*l)-w[1](xi*l))/(M*l^2/(6*EI))); | expand(subst(sol[2],w[2](xi*l)-w[1](xi*l))/(M*l^2/(6*EI))); | ||
ratsimp(subst(sol[2],w[1](xi*l))/(M*l^2/(6*EI))); | ratsimp(subst(sol[2],w[1](xi*l))/(M*l^2/(6*EI))); | ||
plot2d(subst([xi=t,alpha=1/2],[[parametric,xi,subst(sol[2],w[1](xi*l))/(M*l^2/(6*EI)),[t,0,alpha]], | |||
[parametric,xi,subst(sol[2],w[2](xi*l))/(M*l^2/(6*EI)),[t,alpha,1]]]), | |||
[legend,"ξ<α","ξ>α"], | [legend,"ξ<α","ξ>α"], | ||
[xlabel, "x/l →"], | [xlabel, "x/l →"], | ||
[ylabel, "w(x)/W →"]); | [ylabel, "w(x)/W →"]); | ||
/* maximum */ | /* maximum */ | ||
maxi : solve(diff(subst([alpha=1/2],subst(sol[2],w[1](xi*l))),xi)=0,xi); | maxi : solve(diff(subst([alpha=1/2],subst(sol[2],w[1](xi*l))),xi)=0,xi); | ||
WM : -subst([3^(5/2) = 3^2*sqrt(3)], ratsimp(subst(maxi[2],subst([alpha=1/2],subst(sol[2],w[1](xi*l)))))); | WM : -subst([3^(5/2) = 3^2*sqrt(3)], ratsimp(subst(maxi[2],subst([alpha=1/2],subst(sol[2],w[1](xi*l)))))); | ||
PM : ratsimp(subst([xi=0],subst([alpha=1/2],diff(subst(sol[2],w[1](xi*l)),xi)/l)));}} | PM : ratsimp(subst([xi=0],subst([alpha=1/2],diff(subst(sol[2],w[1](xi*l)),xi)/l))); | ||
}} | |||
==Kragbalken Streckenlast== | ==Kragbalken Streckenlast== |
Version vom 16. April 2021, 10:08 Uhr
Biegelinien-Tabelle in Anlehnung an Literatur: Gross e.a.: Formeln und Aufgaben zur Technischen Mechanik 2.
Wir nutzen dafür
Das Föppel-Symbol:
Eine Dimensionslose Schreibweise:
,
Kragbalken
Skizze | ||||
---|---|---|---|---|
Balken unter Endmoment
Skizze | ||||
---|---|---|---|---|
Balken Streckenlast
Skizze | ||||
---|---|---|---|---|
Einzellast, doppeltgelenkige Lagerung
Skizze | ||||
---|---|---|---|---|
Einzelmoment, doppeltgelenkige Lagerung
Skizze | ||||||
---|---|---|---|---|---|---|
|
Maxima Source Code
Zum Nachrechnen steht hier der Quellcodes des CAS.
/*******************************************************/
/* MAXIMA script */
/* version: wxMaxima 15.08.2 */
/* author: Andreas Baumgart */
/* last updated: 2018-02-16 */
/* ref: TMC, Labor 3 */
/* description: analytische Lösung für load-case-5 */
/* */
/*******************************************************/
feld: makelist(w[i](x) = sum(C[i,j]*x^j,j,0,3),i,1,2);
BC : [subst([x=0], subst(feld,w[1](x)) )=0,
subst([x=0],diff(subst(feld,w[1](x)),x,2))=0, subst([x=a], subst(feld,w[1](x)) )=subst([x=a], subst(feld,w[2](x)) ), subst([x=a],diff(subst(feld,w[1](x)),x,1))=subst([x=a],diff(subst(feld,w[2](x)),x,1)), subst([x=a],diff(subst(feld,w[1](x)),x,3))=subst([x=a],diff(subst(feld,w[2](x)),x,3)), EI*subst([x=a],diff(subst(feld,w[1](x)),x,2))-M=EI*subst([x=a],diff(subst(feld,w[2](x)),x,2)), subst([x=l], subst(feld,w[2](x)) )=0, subst([x=l],diff(subst(feld,w[2](x)),x,2))=0];
IC : flatten(makelist(makelist(C[i,j],j,0,3),i,1,2));
sol[1]: solve(BC,IC)[1]; sol[2]: ratsimp(subst([x=xi*l,a=alpha*l],subst(sol[1],feld)));
/* foeppel - part */ expand(subst(sol[2],w[2](xi*l)-w[1](xi*l))/(M*l^2/(6*EI))); ratsimp(subst(sol[2],w[1](xi*l))/(M*l^2/(6*EI)));
plot2d(subst([xi=t,alpha=1/2],[[parametric,xi,subst(sol[2],w[1](xi*l))/(M*l^2/(6*EI)),[t,0,alpha]],
[parametric,xi,subst(sol[2],w[2](xi*l))/(M*l^2/(6*EI)),[t,alpha,1]]]), [legend,"ξ<α","ξ>α"], [xlabel, "x/l →"], [ylabel, "w(x)/W →"]);
/* maximum */ maxi : solve(diff(subst([alpha=1/2],subst(sol[2],w[1](xi*l))),xi)=0,xi); WM : -subst([3^(5/2) = 3^2*sqrt(3)], ratsimp(subst(maxi[2],subst([alpha=1/2],subst(sol[2],w[1](xi*l)))))); PM : ratsimp(subst([xi=0],subst([alpha=1/2],diff(subst(sol[2],w[1](xi*l)),xi)/l)));
Kragbalken Streckenlast
Skizze | ||||
---|---|---|---|---|