Gelöste Aufgaben/TC12: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Zeile 106: Zeile 106:
====Aus Rand "A"====
====Aus Rand "A"====
<table class="wikitable" style="background-color:white;">
<table class="wikitable" style="background-color:white;">
<tr><td>[[Datei:TC12-11A.png|rahmenlos|alternativtext=|150px]]
<tr><td>[[Datei:TC12-11A.png|rahmenlos|alternativtext=|90x90px]]
</td><td>''Geometrische Randbedingungen''
</td><td>''Geometrische Randbedingungen''
 
# <math>w_1(0)=0</math>
* keine


''Kraft- und Momenten-Randbedingungen''
''Kraft- und Momenten-Randbedingungen''


# <math>m_A\;g - S \sin(\alpha_A) + Q_{A,+}= 0 \text{ mit } Q_{A,+} = - E I\cdot w'''(x)|_{x=0}</math>
#<math>M_{A} = 0 \text{ mit } M_{A} = - EI_1\cdot w''(x)|_{x=0}</math>
# <math>M_{A,+}= 0 \text{ mit } M_{A,+} = - E I\cdot w'''(x)|_{x=0}</math>
</td></tr>
</td></tr>
</table>
</table>
Zeile 120: Zeile 118:
====Aus Übergang "B"====
====Aus Übergang "B"====
<table class="wikitable" style="background-color:white;">
<table class="wikitable" style="background-color:white;">
<tr><td>[[Datei:TC12-11B.png|rahmenlos|alternativtext=|180px]]
<tr><td>[[Datei:TC12-11B.png|rahmenlos|alternativtext=|120x120px]]
</td><td>''Geometrische Randbedingungen''
</td><td>''Geometrische Randbedingungen''
# <math>w_1(\ell_1)=w_2(\ell_1)</math>
# <math>w_1(\ell_1)=w_2(\ell_1)</math>
Zeile 127: Zeile 125:
''Kraft- und Momenten-Randbedingungen''
''Kraft- und Momenten-Randbedingungen''


# <math>-M_{B,-} + M_{B,+} = 0</math>
#<math>-M_{B,-} - M_{B0} + M_{B,+} = 0</math>
# <math>-Q_{B,-} - S\; \sin(\alpha_B) +Q_{B,+} = 0</math>
#<math>-Q_{B,-}-k_B\cdot w_B + -Q_{B,+} = 0</math>
</td></tr>
</td></tr>
</table>
</table>
Zeile 134: Zeile 132:
====Aus Rand "C"====
====Aus Rand "C"====
<table class="wikitable" style="background-color:white;">
<table class="wikitable" style="background-color:white;">
<tr><td>[[Datei:TC12-11C1.png|rahmenlos|alternativtext=|170px]]<br/>
<tr><td>[[Datei:TC12-11C1.png|rahmenlos|alternativtext=|125x125px]]<br/>
[[Datei:TC12-11C2.png|rahmenlos|alternativtext=|170px]]
[[Datei:TC12-11C2.png|rahmenlos|alternativtext=|130x130px]]
</td><td>''Geometrische Randbedingungen''
</td><td>''Geometrische Randbedingungen''
# <math>w_2(\ell)=0</math>
#<math>w_C = r\cdot\Phi_C \text{ mit } \Phi_C = - \phi_2(l_2)</math>


''Kraft- und Momenten-Randbedingungen''
''Kraft- und Momenten-Randbedingungen''


# <math>K_C\cdot \Phi_C - M_{C,-} = 0 \text{ mit } M_{C,-} = - E I\cdot w''(x)|_{x=\ell}</math>
#<math>r\cdot Q_{C} + M_C = 0</math>
</td></tr>
</td></tr>
</table>
</table>
Zeile 147: Zeile 145:
Einsetzen liefert 8 Gleichungen
Einsetzen liefert 8 Gleichungen


<math>\begin{array}{rl} \displaystyle \frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}&=0\cr \displaystyle  -{{C}_{1,2}}&=0\cr \displaystyle  \frac{{{l}_{1}^{3}}\cdot {{C}_{1,3}}}{6\cdot {{\mathit{EI}}_{1}}}+\frac{{{l}_{1}^{2}}\cdot {{C}_{1,2}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{l}_{1}}\cdot {{C}_{1,1}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}+\frac{{{q}_{0}}\cdot {{l}_{1}^{4}}}{24\cdot {{\mathit{EI}}_{1}}}&=\frac{{{C}_{2,0}}}{{{\mathit{EI}}_{2}}}\cr \displaystyle  \frac{{{l}_{1}^{2}}\cdot {{C}_{1,3}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{l}_{1}}\cdot {{C}_{1,2}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,1}}}{{{\mathit{EI}}_{1}}}+\frac{{{q}_{0}}\cdot {{l}_{1}^{3}}}{6\cdot {{\mathit{EI}}_{1}}}&=\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}\cr \displaystyle  -\frac{{{C}_{2,0}}\cdot {{k}_{B}}}{{{\mathit{EI}}_{2}}}-{{C}_{2,3}}+{{C}_{1,3}}+{{q}_{0}}\cdot {{l}_{1}}&=0\cr \displaystyle  -{{C}_{2,2}}+{{l}_{1}}\cdot {{C}_{1,3}}+{{C}_{1,2}}+\frac{{{q}_{0}}\cdot {{l}_{1}^{2}}}{2}&={{M}_{B}}\cr \displaystyle  -\frac{{{l}_{2}^{2}}\cdot {{C}_{2,3}}\cdot r}{2\cdot {{\mathit{EI}}_{2}}}-\frac{{{l}_{2}}\cdot {{C}_{2,2}}\cdot r}{{{\mathit{EI}}_{2}}}-\frac{{{C}_{2,1}}\cdot r}{{{\mathit{EI}}_{2}}}&=\displaystyle\frac{{{l}_{2}^{3}}\cdot {{C}_{2,3}}}{6\cdot {{\mathit{EI}}_{2}}}+\frac{{{l}_{2}^{2}}\cdot {{C}_{2,2}}}{2\cdot {{\mathit{EI}}_{2}}}+\frac{{{l}_{2}}\cdot {{C}_{2,1}}}{{{\mathit{EI}}_{2}}}+\frac{{{C}_{2,0}}}{{{\mathit{EI}}_{2}}}\cr \displaystyle  -{{C}_{2,3}}\cdot r-{{l}_{2}}\cdot {{C}_{2,3}}-{{C}_{2,2}}&=0 \end{array}</math>
<math>\begin{array}{rl} \displaystyle \frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}&=0\\ \displaystyle  -{{C}_{1,2}}&=0\\ \displaystyle  \frac{{{l}_{1}^{3}}\cdot {{C}_{1,3}}}{6\cdot {{\mathit{EI}}_{1}}}+\frac{{{l}_{1}^{2}}\cdot {{C}_{1,2}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{l}_{1}}\cdot {{C}_{1,1}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}+\frac{{{q}_{0}}\cdot {{l}_{1}^{4}}}{24\cdot {{\mathit{EI}}_{1}}}&=\frac{{{C}_{2,0}}}{{{\mathit{EI}}_{2}}}\\ \displaystyle  \frac{{{l}_{1}^{2}}\cdot {{C}_{1,3}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{l}_{1}}\cdot {{C}_{1,2}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,1}}}{{{\mathit{EI}}_{1}}}+\frac{{{q}_{0}}\cdot {{l}_{1}^{3}}}{6\cdot {{\mathit{EI}}_{1}}}&=\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}\\ \displaystyle  -\frac{{{C}_{2,0}}\cdot {{k}_{B}}}{{{\mathit{EI}}_{2}}}-{{C}_{2,3}}+{{C}_{1,3}}+{{q}_{0}}\cdot {{l}_{1}}&=0\\ \displaystyle  -{{C}_{2,2}}+{{l}_{1}}\cdot {{C}_{1,3}}+{{C}_{1,2}}+\frac{{{q}_{0}}\cdot {{l}_{1}^{2}}}{2}&={{M}_{B}}\\ \displaystyle  -\frac{{{l}_{2}^{2}}\cdot {{C}_{2,3}}\cdot r}{2\cdot {{\mathit{EI}}_{2}}}-\frac{{{l}_{2}}\cdot {{C}_{2,2}}\cdot r}{{{\mathit{EI}}_{2}}}-\frac{{{C}_{2,1}}\cdot r}{{{\mathit{EI}}_{2}}}&=\displaystyle\frac{{{l}_{2}^{3}}\cdot {{C}_{2,3}}}{6\cdot {{\mathit{EI}}_{2}}}+\frac{{{l}_{2}^{2}}\cdot {{C}_{2,2}}}{2\cdot {{\mathit{EI}}_{2}}}+\frac{{{l}_{2}}\cdot {{C}_{2,1}}}{{{\mathit{EI}}_{2}}}+\frac{{{C}_{2,0}}}{{{\mathit{EI}}_{2}}}\\ \displaystyle  -{{C}_{2,3}}\cdot r-{{l}_{2}}\cdot {{C}_{2,3}}-{{C}_{2,2}}&=0 \end{array}
</math>


für die Integrationskonstanten.
für die Integrationskonstanten.
<!-------------------------------------------------------------------------------->
<!-------------------------------------------------------------------------------->


Zeile 169: Zeile 162:
==tmp==
==tmp==


<!-------------------------------------------------------------------------------->
Das Gleichungssystem wollen wir als
 
<math>\underline{\underline{A}}\cdot\underline{x}= \underline{b}</math>
 
schreiben, also
 
<math>\begin{pmatrix}\frac{1}{{{\mathit{EI}}_{1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0\\ \frac{1}{{{\mathit{EI}}_{1}}} & \frac{{{\ell}_{1}}}{{{\mathit{EI}}_{1}}} & \frac{{{\ell}_{1}^{2}}}{2\cdot {{\mathit{EI}}_{1}}} & \frac{{{\ell}_{1}^{3}}}{6\cdot {{\mathit{EI}}_{1}}} & -\frac{1}{{{\mathit{EI}}_{2}}} & 0 & 0 & 0\\ 0 & \frac{1}{{{\mathit{EI}}_{1}}} & \frac{{{\ell}_{1}}}{{{\mathit{EI}}_{1}}} & \frac{{{\ell}_{1}^{2}}}{2\cdot {{\mathit{EI}}_{1}}} & 0 & -\frac{1}{{{\mathit{EI}}_{2}}} & 0 & 0\\ 0 & 0 & 0 & 1 & -\frac{{{k}_{B}}}{{{\mathit{EI}}_{2}}} & 0 & 0 & -1\\ 0 & 0 & 1 & {{\ell}_{1}} & 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 0 & -\frac{1}{{{\mathit{EI}}_{2}}} & -\frac{{{\ell}_{2}}+r}{{{\mathit{EI}}_{2}}} & -\frac{{{\ell}_{2}^{2}}+2\cdot {{\ell}_{2}}\cdot r}{2\cdot {{\mathit{EI}}_{2}}} & -\frac{{{\ell}_{2}^{3}}+3\cdot {{\ell}_{2}^{2}}\cdot r}{6\cdot {{\mathit{EI}}_{2}}}\\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -r-{{\ell}_{2}}\end{pmatrix}\cdot\begin{pmatrix}{{C}_{1,0}}\\ {{C}_{1,1}}\\ {{C}_{1,2}}\\ {{C}_{1,3}}\\ {{C}_{2,0}}\\ {{C}_{2,1}}\\ {{C}_{2,2}}\\ {{C}_{2,3}}\end{pmatrix}=\begin{pmatrix}0\\ 0\\ -\frac{{{q}_{0}}\cdot {{\ell}_{1}^{4}}}{24\cdot {{\mathit{EI}}_{1}}}\\ -\frac{{{q}_{0}}\cdot {{\ell}_{1}^{3}}}{6\cdot {{\mathit{EI}}_{1}}}\\ -{{q}_{0}}\cdot {{\ell}_{1}}\\ {{M}_{B}}-\frac{{{q}_{0}}\cdot {{\ell}_{1}^{2}}}{2}\\ 0\\ 0\end{pmatrix}</math>.
 
Die Matrix-Elemente sind für die Koeffizientenmatrix
 
<math>\begin{array}{l} a_{1,1} = 1/EI_{1}\\ a_{2,3} = -1\\ a_{3,1} = 1/EI_{1}\\ a_{3,2} = \ell_{1}/EI_{1}\\ a_{3,3} = \ell_{1}^2/(2\cdot EI_{1})\\ a_{3,4} = \ell_{1}^3/(6\cdot EI_{1})\\ a_{3,5} = -1/EI_{2}\\ a_{4,2} = 1/EI_{1}\\ a_{4,3} = \ell_{1}/EI_{1}\\ a_{4,4} = \ell_{1}^2/(2\cdot EI_{1})\\ a_{4,6} = -1/EI_{2}\\ a_{5,4} = 1\\ a_{5,5} = -k_B/EI_{2}\\ a_{5,8} = -1\\ a_{6,3} = 1\\ a_{6,4} = \ell_{1}\\ a_{6,7} = -1\\ a_{7,5} = -1/EI_{2}\\ a_{7,6} = -(r+\ell_{2})/EI_{2}\\ a_{7,7} = -(2\cdot \ell_{2}\cdot r+\ell_{2}^2)/(2\cdot EI_{2})\\ a_{7,8} = -(3\cdot \ell_{2}^2\cdot r+\ell_{2}^3)/(6\cdot EI_{2})\\ a_{8,7} = -1\\ a_{8,8} = -r-\ell_{2}\\ \end{array}</math>
 
und für die rechte Seite
 
<math>\begin{array}{l} b_{1} = 0\\ b_{2} = 0\\ b_{3} = -(q_0\cdot\ell_{1}^4)/(24\cdot EI_{1})\\ b_{4} = -(q_0\cdot\ell_{1}^3)/(6\cdot EI_{1})\\ b_{5} = -q_0\cdot\ell_{1}\\ b_{6} = M_B-(q_0\cdot\ell_{1}^2)/2\\ b_{7} = 0\\ b_{8} = 0 \end{array}</math><!-------------------------------------------------------------------------------->
 
 
{{MyCodeBlock|title=Prepare for Solver
{{MyCodeBlock|title=Prepare for Solver
|text=Text
|text=Text
Zeile 180: Zeile 189:
==tmp==
==tmp==


<!-------------------------------------------------------------------------------->
Das Lösen des Gleichungssystems liefert
 
<math>\begin{array}{ll} \displaystyle {{C}_{1,0}}&\displaystyle =0\\ \displaystyle {{C}_{1,1}}&\displaystyle =-\frac{{{q}_{0}}\cdot {{\ell}_{1}^{3}}}{56}\\ \displaystyle {{C}_{1,2}}&\displaystyle =0\\ \displaystyle {{C}_{1,3}}&\displaystyle =-\frac{{{q}_{0}}\cdot {{\ell}_{1}}}{7}\\ \displaystyle {{C}_{2,0}}&\displaystyle =0\\ \displaystyle {{C}_{2,1}}&\displaystyle =\frac{13\cdot {{q}_{0}}\cdot {{\ell}_{1}^{3}}}{84}\\ \displaystyle {{C}_{2,2}}&\displaystyle =-\frac{9\cdot {{q}_{0}}\cdot {{\ell}_{1}^{2}}}{14}\\ \displaystyle {{C}_{2,3}}&\displaystyle =\frac{6\cdot {{q}_{0}}\cdot {{\ell}_{1}}}{7} \end{array}</math><!-------------------------------------------------------------------------------->
 
{{MyCodeBlock|title=Solving
{{MyCodeBlock|title=Solving
|text=Text
|text=Text
Zeile 191: Zeile 203:
==tmp==
==tmp==


<!-------------------------------------------------------------------------------->
Zum Auftragen der Ergebnisse nutzen wir die  Standard-Lösungen - Lastfall 3 mit der maximalen Auslenkung
 
<math>W^* = \displaystyle \frac{5\;\ell_1^4\cdot q_0}{384 \; EI_1}</math>
 
und dem Winkel
 
<math>\displaystyle \Phi^* = \frac{q_0\;\ell_1^3}{24\;EI_1}</math>
 
Die Ergebnisse sind dann ...<!-------------------------------------------------------------------------------->
 
 
 
 
{{MyCodeBlock|title=Post-Processing
{{MyCodeBlock|title=Post-Processing
|text=Text
|text=Text

Version vom 7. April 2021, 14:42 Uhr


Aufgabenstellung

Ein Stab ABC (E-Modul: E) besteht aus zwei Sektionen mit den Längen 1 bzw. 2 sowie den Flächenmomenten I1 bzw. I2. Die Sektionen haben jeweils einen quadratischen Querschnitt, Sektion AB ist durch eine konstante Streckenlast q0 belastet, in B wirkt das Moment MB0. Der Stab ist in A durch ein gelenkiges Festlager gelagert. In C ist das Stabende fest mit dem Umfang einer Rolle vom Radius r verbunden, die in D frei drehbar gelagert ist. In B sind die beiden Sektionen fest miteinander verbunden. Die Feder in B ist eine Translationsfeder mit der Steifigkeit  kB.

Interessant ist die kinematische Randbedingung aus der Rolle.


Lageplan

Gesucht ist die Analytische Lösung für den Euler-Bernoulli-Balken und die Verläufe der Schnittgrößen.

Parameter

Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:

Erstellen Sie dazu ein Programm, mit einem Euler-Bernoulli-Modell für die Berechnung der analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken. Bestimmen Sie Querschnitts-Abmessungen der Sektionen so, dass die maximale Auslenkung des Systems 10 mm beträgt.

Lösung mit Maxima

Die Aufgabe ist ein klassisches Randwertproblem:

  1. zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehung

EIiwiIV(xi)=q(xi),i={1,2} berschrieben wird.

  1. Rand- und Übergangsbedingungen in den Punkten A, B, C

Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:

Rand
A
Bereich IÜbergang
B
Bereich IIRand
C


tmp

Wir lösen die Feld-Differentialgleichung exakt und passen die Integrationskonstanten an die Rand- und Übergangsbedingungen an.

Header

Text




tmp

Wir definieren zunächst die bekannten Parameter zu

EI2=2EI12=12r=14MB=q012kB=3EI113wmax=90mm.

Weitere brauchen nicht.

Declarations

Text




tmp

In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung

EIiwiIV(xi)=q(xi),i={1,2} mit q(xi)=q0ϕ0(ξ)+q1ϕ1(ξ),

die wir durch Integration lösen und dann bereichsweise anpassen.

So gilt für Bereich II: q0 = 0.

Die allgemeine Lösung ist mit

... für Bereich I:

w1(x):=24C1,0+24C1,1x+12C1,2x2+4C1,3x3+q0x424EI1ϕ1(x):=24C1,1+24C1,2x+12C1,3x2+4q0x324EI1M1(x):=24C1,2+24C1,3x+12q0x224Q1(x):=24C1,3+24q0x24

... für Bereich II:

w2(x):=120l2C2,0+120l2C2,1x+60l2C2,2x2+20l2C2,3x3120l2EI2ϕ2(x):=120l2C2,1+120l2C2,2x+60l2C2,3x2120l2EI2M2(x):=120l2C2,2+120l2C2,3x120l2Q2(x):=C2,3.


Generic Solutions for Euler-Bernoulli-Beam

Text




tmp

Für die 2*4 = 8 Integrationskonstanten

[C1,0,C1,1,C1,2,C1,3,C2,0,C2,1,C2,2,C2,3]

suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.

Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen, wenn diese unterschiedlich sind.

Aus Rand "A"

Geometrische Randbedingungen
  1. w1(0)=0

Kraft- und Momenten-Randbedingungen

  1. MA=0 mit MA=EI1w(x)|x=0

Aus Übergang "B"

Geometrische Randbedingungen
  1. w1(1)=w2(1)
  2. ϕ1(1)=ϕ2(1)

Kraft- und Momenten-Randbedingungen

  1. MB,MB0+MB,+=0
  2. QB,kBwB+QB,+=0

Aus Rand "C"


Geometrische Randbedingungen
  1. wC=rΦC mit ΦC=ϕ2(l2)

Kraft- und Momenten-Randbedingungen

  1. rQC+MC=0

Einsetzen liefert 8 Gleichungen

C1,0EI1=0C1,2=0l13C1,36EI1+l12C1,22EI1+l1C1,1EI1+C1,0EI1+q0l1424EI1=C2,0EI2l12C1,32EI1+l1C1,2EI1+C1,1EI1+q0l136EI1=C2,1EI2C2,0kBEI2C2,3+C1,3+q0l1=0C2,2+l1C1,3+C1,2+q0l122=MBl22C2,3r2EI2l2C2,2rEI2C2,1rEI2=l23C2,36EI2+l22C2,22EI2+l2C2,1EI2+C2,0EI2C2,3rl2C2,3C2,2=0

für die Integrationskonstanten.


Boundary Conditions

Text




tmp

Das Gleichungssystem wollen wir als

A__x_=b_

schreiben, also

(1EI10000000001000001EI11EI1122EI1136EI11EI200001EI11EI1122EI101EI2000001kBEI20010011001000001EI22+rEI222+22r2EI223+322r6EI20000001r2)(C1,0C1,1C1,2C1,3C2,0C2,1C2,2C2,3)=(00q01424EI1q0136EI1q01MBq012200).

Die Matrix-Elemente sind für die Koeffizientenmatrix

a1,1=1/EI1a2,3=1a3,1=1/EI1a3,2=1/EI1a3,3=12/(2EI1)a3,4=13/(6EI1)a3,5=1/EI2a4,2=1/EI1a4,3=1/EI1a4,4=12/(2EI1)a4,6=1/EI2a5,4=1a5,5=kB/EI2a5,8=1a6,3=1a6,4=1a6,7=1a7,5=1/EI2a7,6=(r+2)/EI2a7,7=(22r+22)/(2EI2)a7,8=(322r+23)/(6EI2)a8,7=1a8,8=r2

und für die rechte Seite

b1=0b2=0b3=(q014)/(24EI1)b4=(q013)/(6EI1)b5=q01b6=MB(q012)/2b7=0b8=0


Prepare for Solver

Text




tmp

Das Lösen des Gleichungssystems liefert

C1,0=0C1,1=q01356C1,2=0C1,3=q017C2,0=0C2,1=13q01384C2,2=9q01214C2,3=6q017

Solving

Text




tmp

Zum Auftragen der Ergebnisse nutzen wir die  Standard-Lösungen - Lastfall 3 mit der maximalen Auslenkung

W*=514q0384EI1

und dem Winkel

Φ*=q01324EI1

Die Ergebnisse sind dann ...



Post-Processing

Text






Links

  • ...

Literature

  • ...



Biegelinie w(x)
Biegemoment M(x)
Querkraft Q(x)
Lageplan
Kippung w'(x)