Gelöste Aufgaben/Kw98: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 174: | Zeile 174: | ||
::<math>\begin{pmatrix}\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}=0\\ \frac{{{C}_{1,1}}\cdot {{K}_{A}}}{{{\mathit{EI}}_{1}}}-{{C}_{1,2}}=0\\ \frac{{{\ell}_{1}^{4}}\cdot {{q}_{B}}}{120\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{4}}\cdot {{q}_{A}}}{30\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{3}}\cdot {{C}_{1,3}}}{6\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{2}}\cdot {{C}_{1,2}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}}\cdot {{C}_{1,1}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}=\frac{{{C}_{2,0}}}{{{\mathit{EI}}_{2}}}\\ \frac{{{\ell}_{1}^{3}}\cdot {{q}_{B}}}{24\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{3}}\cdot {{q}_{A}}}{8\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{2}}\cdot {{C}_{1,3}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}}\cdot {{C}_{1,2}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,1}}}{{{\mathit{EI}}_{1}}}=\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}\\ \frac{{{\ell}_{1}}\cdot {{q}_{B}}}{2}-\frac{{{C}_{2,0}}\cdot {{k}_{B}}}{{{\mathit{EI}}_{2}}}+\frac{{{\ell}_{1}}\cdot {{q}_{A}}}{2}-{{C}_{2,3}}+{{C}_{1,3}}=0\\ -{{M}_{B}}+\frac{{{\ell}_{1}^{2}}\cdot {{q}_{B}}}{6}+\frac{{{\ell}_{1}^{2}}\cdot {{q}_{A}}}{3}-{{C}_{2,2}}+{{\ell}_{1}}\cdot {{C}_{1,3}}+{{C}_{1,2}}=0\\ \frac{{{\ell}_{2}^{2}}\cdot {{C}_{2,3}}}{2\cdot {{\mathit{EI}}_{2}}}+\frac{{{\ell}_{2}}\cdot {{C}_{2,2}}}{{{\mathit{EI}}_{2}}}+\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}=0\\ -\frac{{{\ell}_{2}^{3}}\cdot {{C}_{2,3}}\cdot {{k}_{C}}}{6\cdot {{\mathit{EI}}_{2}}}-\frac{{{\ell}_{2}^{2}}\cdot {{C}_{2,2}}\cdot {{k}_{C}}}{2\cdot {{\mathit{EI}}_{2}}}-\frac{{{\ell}_{2}}\cdot {{C}_{2,1}}\cdot {{k}_{C}}}{{{\mathit{EI}}_{2}}}-\frac{{{C}_{2,0}}\cdot {{k}_{C}}}{{{\mathit{EI}}_{2}}}+{{C}_{2,3}}=0\end{pmatrix} | ::<math>\begin{pmatrix}\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}=0\\ \frac{{{C}_{1,1}}\cdot {{K}_{A}}}{{{\mathit{EI}}_{1}}}-{{C}_{1,2}}=0\\ \frac{{{\ell}_{1}^{4}}\cdot {{q}_{B}}}{120\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{4}}\cdot {{q}_{A}}}{30\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{3}}\cdot {{C}_{1,3}}}{6\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{2}}\cdot {{C}_{1,2}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}}\cdot {{C}_{1,1}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,0}}}{{{\mathit{EI}}_{1}}}=\frac{{{C}_{2,0}}}{{{\mathit{EI}}_{2}}}\\ \frac{{{\ell}_{1}^{3}}\cdot {{q}_{B}}}{24\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{3}}\cdot {{q}_{A}}}{8\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}^{2}}\cdot {{C}_{1,3}}}{2\cdot {{\mathit{EI}}_{1}}}+\frac{{{\ell}_{1}}\cdot {{C}_{1,2}}}{{{\mathit{EI}}_{1}}}+\frac{{{C}_{1,1}}}{{{\mathit{EI}}_{1}}}=\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}\\ \frac{{{\ell}_{1}}\cdot {{q}_{B}}}{2}-\frac{{{C}_{2,0}}\cdot {{k}_{B}}}{{{\mathit{EI}}_{2}}}+\frac{{{\ell}_{1}}\cdot {{q}_{A}}}{2}-{{C}_{2,3}}+{{C}_{1,3}}=0\\ -{{M}_{B}}+\frac{{{\ell}_{1}^{2}}\cdot {{q}_{B}}}{6}+\frac{{{\ell}_{1}^{2}}\cdot {{q}_{A}}}{3}-{{C}_{2,2}}+{{\ell}_{1}}\cdot {{C}_{1,3}}+{{C}_{1,2}}=0\\ \frac{{{\ell}_{2}^{2}}\cdot {{C}_{2,3}}}{2\cdot {{\mathit{EI}}_{2}}}+\frac{{{\ell}_{2}}\cdot {{C}_{2,2}}}{{{\mathit{EI}}_{2}}}+\frac{{{C}_{2,1}}}{{{\mathit{EI}}_{2}}}=0\\ -\frac{{{\ell}_{2}^{3}}\cdot {{C}_{2,3}}\cdot {{k}_{C}}}{6\cdot {{\mathit{EI}}_{2}}}-\frac{{{\ell}_{2}^{2}}\cdot {{C}_{2,2}}\cdot {{k}_{C}}}{2\cdot {{\mathit{EI}}_{2}}}-\frac{{{\ell}_{2}}\cdot {{C}_{2,1}}\cdot {{k}_{C}}}{{{\mathit{EI}}_{2}}}-\frac{{{C}_{2,0}}\cdot {{k}_{C}}}{{{\mathit{EI}}_{2}}}+{{C}_{2,3}}=0\end{pmatrix} | ||
</math> | </math>. | ||
für die Integrationskonstanten. | für die Integrationskonstanten. | ||
|code= | |code= | ||
<syntaxhighlight lang="lisp" line start=1> | <syntaxhighlight lang="lisp" line start=1> | ||
1+1 | /* integration constants */ | ||
ICs : [C[1,0],C[1,1],C[1,2],C[1,3],C[2,0],C[2,1],C[2,2],C[2,3]]; | |||
/* boundary conditions */ | |||
node[A]: [ w[1](0) = 0, | |||
K[A]*Phi[1](0)+M[1](0) = 0]; | |||
node[B]: [ w[1](l[1]) = w[2](0), | |||
Phi[1](l[1]) = Phi[2](0), | |||
-Q[1](l[1]) -k[B]*w[2](0) +Q[2](0) = 0, | |||
-M[1](l[1]) -M[B]+M[2](0) = 0]; | |||
node[C]: [ Phi[2](l[2]) = 0, | |||
-Q[2](l[2]) - k[C]*w[2](l[2]) = 0]; | |||
BCs : expand(append(node[A],node[B],node[C])); | |||
</syntaxhighlight> | </syntaxhighlight> | ||
}} | }} |
Version vom 31. März 2021, 12:29 Uhr
Aufgabenstellung
Ein Stab ABC ist durch eine lineare veränderliche Streckenlast q mit den Eckwerten qA in A und qB in B sowie dem Moment MB in B belastet. Der Stab (E-Modul: E) besteht aus zwei Sektionen mit den Längen l1 bzw. l2 sowie den Flächenmomenten I1 bzw. I2. Der Stab ist in A durch ein gelenkiges Festlager, in C durch eine Schiebehülse gelagert, in B sind die beiden Sektionen fest miteinander verbunden. Die Feder in A ist eine Drehfester mit Steifigkeit KA, die Federn in B und C sind Translationsfedern mit den Steifigkeiten kB, kC.

Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken.

Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:
Lösung mit Maxima
Die Aufgabe ist ein klassisches Randwertproblem:
- zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehungberschrieben wird.
- Rand- und Übergangsbedingungen in den Punkten A, B, C
Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:
Rand A | Bereich I | Übergang B | Bereich II | Rand C |
---|---|---|---|---|
![]() | ![]() | |||
![]() | ![]() | ![]() |
Header
Diese Aufgabe mit der Methode der Finiten Elemente in KW96 gelöst.
Declarations
Wir definieren die Parameter
- .
und die Formfunktionen für die Streckenlast
- .
Formfunctions
In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung
- ,
die wir durch Integration lösen und dann bereichsweise anpassen.
So gilt für Bereich II: q0 = 0 und q1 = 0.
Die allgemeine Lösung ist mit
... für Bereich I:
... für Bereich II:
- .
Boundary Conditions
Für die 2*4 = 8 Integrationskonstanten
suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.
Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen.
Aus Rand "A"
![]() | Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Aus Übergang "B"
![]() | Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Aus Rand "C"
![]() | Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Und das liefert das Gleichungssystem aus 8 Gleichungen
- .
für die Integrationskonstanten.
Prepare for Solver
Das Gleichungssystem wollen wir als
schreiben, also
Die Matrix-Elemente sind für die Koeffizientenmatrix
und für die rechte Seite
- .
Solving
Das Lösen des Gleichungssystems liefert
- .
Post-Processing
Und die Ergebnisse können wir uns anschauen ...
... für w(x):

... für Φ(x):

... für M(x):

... für Q(x):

... für die Lager-Reaktionskräfte:
Links
- ...
Literature
- ...