Gelöste Aufgaben/Kw52: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 5: | Zeile 5: | ||
[[Category:Biege-Belastung]] | [[Category:Biege-Belastung]] | ||
[[Category:Euler-Bernoulli-Balken]] | [[Category:Euler-Bernoulli-Balken]] | ||
[[Category: | [[Category:Rayleigh-Ritz-Prinzip]] | ||
[[Category:Maxima]] | [[Category:Maxima]] | ||
Version vom 30. März 2021, 06:58 Uhr
Aufgabenstellung
Eine Brücke ABC der Masse mB und homogener Biegesteifigkeit EI ist in C gelenkig gelagert und in A sowie B mit einem Seil verbunden. Das undehnbare Seil wird dabei über eine kleine Rolle (Radius r ≪ ℓ) in D haftungsfrei geführt. In Punkt C ist die Brücke über eine Drehfeder der Steifigkeit KC mit dem Lager verbunden. In A steht eine Person der Masse mA.
Geben Sie die Lösung für ein Euler-Bernoulli-Modell der Brücke mit dem Verfahren von Rayleigh-Ritz (EBB) an - hier mit Lagrange-Multiplikator für die geometrische Zwangsbedingung.
Dies ist eine Näherungslösung zu Kw50.
Ermitteln Sie die genäherten Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:
Lösung mit Maxima
In dieser Aufgabe berechnen wir eine Näherungslösung nach dem Verfahren von Rayleigh-Ritz (EBB) zu Kw50.
Alle Überlegungen zur Geometrie des Systems übernehmen wir.
Header
Für die Lösung nutzen wir hier das Ritz-Verfahren mit einer Variante:
- die geometrische Zwangsbedingung für die Punkte A, B durch das Seil erfassen wir durch einen Lagrange-Multiplikator.
/*******************************************************/
/* MAXIMA script */
/* version: wxMaxima 18.10.1 */
/* author: Andreas Baumgart */
/* last updated: 2019-02-12 */
/* ref: TM-C, Labor 1, dimensionless representation */
/* description: finds the rayleigh-ritz with Lagragian */
/* Multiplyers for lab problem #3 */
/*******************************************************/
Declarations
Wir arbeiten mit den selben Parametern und Bezugslängen, wie in Kw50.
Insbesondere gilt auch hier wieder
- .
/* declare variational variables - see 6.3 Identifiers */
declare("Δs", alphabetic);
declare( "ϕ", alphabetic); /* = dw/dx*/
declare( "Π", alphabetic); /* elastic potential */
declare( "ℓ", alphabetic);
declare( "λ", alphabetic);
declare( "Λ", alphabetic);
assume(ℓ[0]>0);
/* system parameters */
params: [K[C] = kappa*EI/ℓ[0],
q[0] = m[B]*g/ℓ[0],
m[A] = theta*m[B],
theta = 1/5,
kappa = 5];
geometry: [alpha[A] = 30*%pi/180,
alpha[B] = 60*%pi/180,
ℓ[0] = ℓ[1]+ℓ[2],
Δs[A] = W[A]*sin(alpha[A]),
Δs[B] = W[B]*sin(alpha[B]),
tan(alpha[B]) = H/ℓ[2],
tan(alpha[A]) = H/ℓ[0],
xi[1] = ℓ[1]/ℓ[0],
xi[2] = ℓ[2]/ℓ[0]];
geometry: ratsimp(solve(geometry,[alpha[A],alpha[B],ℓ[1],ℓ[2],Δs[A],Δs[B],H,xi[1],xi[2]])[1]);
/* reference length selected: */
dimless : ℓ[Bez] = 1/3*m[B]*g*ℓ[0]^3/(EI); /*cantilevered*/
Formfunctions
Nach "Ritz" wählen wir Trial-Functions über die gesamte Stablänge und müssen uns überlegen, welchen Aufwand wir dafür treiben wollen.
Intuitiv wählen wir für jeden Punkt A, B, C jeweils eine Koordinate, hier
- .
und brauchen - zusammen der geometrischen Randbedingung w(ℓ)=0 ein Polynom mit vier freien Parametern - also ein Polynom dritten Grades.
Mit dem Ansatz für die Formfunktion
kommt aus den Bedingungen oben dann
mit
- .Und so sehen sie aus, unsere drei Trial-Functions:
Für die Formfunktion gilt aber immer die geometrische Zwangsbedingung:
- .
/* coordinates */
Q : [W[A],W[B],Phi[C],λ];
/* raw trial function */
v(x) := sum(C[i]*x^i,i,0,3);
/* formfunctions */
const: [subst([x= 0 ], v(x) ) = W[A],
subst([x=ℓ[1]], v(x) ) = W[B],
subst([x=ℓ[0]], diff(v(x),x))= Phi[C],
subst([x=ℓ[0]], v(x) ) = 0 ];
trials : expand(subst(solve(subst(geometry,const), makelist(C[i],i,0,3))[1],v(x)));
phi : makelist(ratsimp(coeff(trials,Q[i])),i,1,3);
Equilibrium Conditions
Die Potentiale aus Elastischer Energien und Arbeitsfunktion der Gewichtskräfte sind
- .
Nach dem Prinzip vom Minimum der Potentiellen Energie ist das System im Gleichgewicht, wenn das Potential U des Systems
erfüllt. Und sich zusätzlich an die Zwangsbedingung hält!
/******************************************************/
/* Boundary Value Problem Formulation */
/* elastic and gravitational potential */
PMPE : [Π[P] = 1/2*integrate(EI*'diff(w(x),x,2)^2, x,0,ℓ[0]) + 1/2*K[C]*Phi[C]^2,
A[P] = integrate(q[0]*w(x), x,0,ℓ[0]) + m[A]*g*W[A]];
Geometric Constraints
Das können wir mit dem Konzept der Lagrange-Multiplikatoren erfassen. Dafür schreiben wir
mit dem Lagrange-Multiplikator λ. Die neuen Gleichgewichtsbedingungen lauten nun
und wir erhalten die vier Gleichungen
- .
/* gemetric constraints */
trials: w(x) = sum(Q[i]*phi[i],i,1,3);
print('phi = expand(subst([x=ℓ[0]*xi],phi)))$
plot2d(ratsimp(subst([x = xi*ℓ[0]],phi)*[1,1,1/ℓ[0]]), [xi,0,1],
[legend, "W[A]","W[B]","Φ[C]"], [xlabel, "x/ℓ →"], [ylabel, "ϕ[i] →"]);
PMPE: subst(trials, PMPE);
PMPE: ev(PMPE,nouns);
U: expand(subst(PMPE,Π[P] - A[P]));
/* Lagrange-Function */
Λ : U + subst(geometry,λ*(Δs[A]+Δs[B]));
/* Equilibrium Conditions */
eom : subst(params,makelist( diff(Λ,Q[i])=0, i,1,4));
Solving
Das Lösen des Gleichungssystems liefert dann
- .
/* Solving */
sol: float(solve(eom,Q)[1]);
Post-Processing
Und die Ergebnisse können wir uns anschauen ...
... für w(x):
... für Φ(x):
... für M(x):
... für Q(x):
/* Post-Processing */
w : subst([x=xi*ℓ[0]],subst(geometry,subst(sol, sum(Q[j]*phi[j],j,1,3))));
fcts: [ w ,
diff(w,xi )/ℓ[0] ,
-EI*diff(w,xi,2)/ℓ[0]^2,
-EI*diff(w,xi,3)/ℓ[0]^3];
fcts: float(subst(geometry,expand(fcts)))$
facts: [1/ℓ[Bez], ℓ[0]/ℓ[Bez], 1/(m[B]*g*ℓ[0]), 1/(m[B]*g)];
textlabels : ["← w(x)/ℓ[Bez]", "← w'(x)/(ℓ[Bez]/ℓ[0]) →", "M(x)/(m[B]*g*ℓ) →", "Q(x)/(m[B]g →"];
for i: 1 thru 4 do(
f : expand(subst(dimless,facts[i]*fcts[i])),
preamble: if i<=2 then "set yrange [] reverse" else "set yrange []",
plot2d(f, [xi,0,1], [legend, false],
[gnuplot_preamble, preamble],
[xlabel, "x/ℓ →"],
[ylabel, textlabels[i]]))$
Links
- Aufgabe Kw50 (analytische Lösung dieser Aufgabe)
- Aufgabe Kw52 (Lösung dieser Aufgabe mit dem Ansatz von Rayleigh-Ritz und Lagrange-Multiplikator)
- Aufgabe Kw53 (Lösung dieser Aufgabe mit dem Ansatz von Rayleigh-Ritz)
Literature
- ...