Gelöste Aufgaben/Kig1: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Zeile 354: Zeile 354:


==tmp==
==tmp==
<!-------------------------------------------------------------------------------->
Die Grafen der gesuchten Funktionen tragen wir nun direkt dimensionslos auf:
 
... für ''w(x)'':[[Datei:Kig1-22.png|mini|w(x)|alternativtext=|ohne]]
 
=== ... für ''ϕ(x)'': ===
[[Datei:Kig1-23.png|mini|phi(x)]]
 
=== ... für ''M(x)'': ===
[[Datei:Kig1-24.png|mini|M(x)]]
 
=== ... für ''Q(x)'': ===
[[Datei:Kig1-25.png|mini|Q(x)]]... für die Lager-Reaktionskräfte:
 
<math>\begin{array}{ll}
{A_z}=&\displaystyle  -\frac{17\, m\, g}{64}
\end{array}</math><!-------------------------------------------------------------------------------->
 
{{MyCodeBlock|title=Post-Processing
{{MyCodeBlock|title=Post-Processing
|text=Text
|text=Text
Zeile 362: Zeile 378:
</syntaxhighlight>
</syntaxhighlight>
}}
}}
[[Datei:Kig1-22.png|mini|w(x)]]
[[Datei:Kig1-23.png|mini|phi(x)]]
[[Datei:Kig1-24.png|mini|M(x)]]
[[Datei:Kig1-25.png|mini|Q(x)]]





Version vom 25. März 2021, 14:48 Uhr


Aufgabenstellung

Das skizzierte System ist ein elektrischer Schalter, der in C einen Stromkreis schließen soll. Es besteht aus einem durchgehenden elastischen Stab ABC (Euler-Bernoulli-Balken: Masse m, Biegesteifigkeit EI, Länge ), der in A gelenkig gelagert ist, in B mit einer Führung aus drei starren, masselosen Stäben gelenkig verbunden ist und dem Kontakt in C. Die Führung ist durch eine Feder (Steifigkeit k) mit der Umgebung verbunden.


Lageplan

Damit der Schalter zuverlässig funktioniert soll die Kraft F an der Führung so gewählt werden, dass die vorgegebene Kontaktkraft K eingestellt wird.Gesucht ist die analytische Lösung für ein Euler-Bernoulli-Modell der elastischen Struktur.

Wir lösen dazu das Gleichungssystem zur Bestimmung der Integrationskonstanten der Differentialgleichung des Euler-Bernoulli-Balkens und weiterer Unbekannten und geben die grafischen Lösungen für w, w', M und Q an.

Gegeben: K, ℓ, EI, m, g, k

Lösung mit Maxima

Koordinaten

Das System besteht aus den drei starren Stäben und dem elastischen Balken.

Die Verschiebungen und Verbiegungen der Stäbe verstehen wir am besten, wenn wir uns das System einmal im ausgelenkten Zustand ansehen. Gleichgewichtsbedingungen für die Führung erhalten wir aus einfachen Kräfte- und Momentenbilanzen, die Gleichgewichtsbedingungen für den Euler-Bernoulli-Balken ist die Feld-Differentialgleichung, deren Integrationskonstanten wir an die Rand- und Übergangsbedingungen anpassen.

Aus dem Bild sehen wir

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ccl} w_1(a) = w_B\\ w_2(\ell-a) = w_C = d\\ \end{array}} ,

und wir arbeiten im folgenden mit

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ccl} \alpha&=&a/\ell\\ \beta &=& 1-\alpha \end{array}} .

Wir beginnen, indem wir Führung und Balken von einander freischneiden:

    

Damit legen wir die Schnittkräfte

  • Bz und
  • K

frei. K ist dabei gegeben, F und Bz sind unbekannt.

Wir müssen überlegen, wo wir Bedingungen für diese beiden Größen herbekommen.

Die Lösung der Teilaufgabe für den Euler-Bernoulli-Balken ist ein klassisches Randwertproblem mit

  1. zwei Gebieten, in denen ein Euler-Bernoulli-Balken in AB (Bereich I) und BC (Bereich II) durch eine Streckenlast q0 belastet ist sowie
  2. Rand- und Übergangsbedingungen in den Punkten A, B, C.

Die Biegesteifigkeit des Balkens ist konstant (also nicht von "x" abhängig), die Lösungen in beiden Bereichen ist also bis auf die Integrationskonstanten gleich.

Wir verwenden ein xi bzw. ξi als Ortskoordinaten je Bereich.

Zusätzlich zum "klassischen" Randwertproblem haben wir hier Zwangsbedingung durch die starren Stäbe und die Kontaktkraft.

tmp

In dieser Lösung arbeiten wir mit dimensionslosen Koordinaten für die unabhängige Koordinate x und die abhängige Koordinate w(x).


Header

Text


1+1




tmp

Declarations

Die Streckenlast auf den Balken ist seine Gewichtskraft, also

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \displaystyle q_0 = \frac{m\;g}{\ell}} .

Später werden wir noch die dimensionslose Koordinate

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi_i = \displaystyle \frac{x_i}{\ell}}

gebrauchen.


1+1




tmp

In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E\,I\, w_i^{IV}(x) = q_0 ,\;\; i=\{1,2\}} ,

die wir durch Integration lösen und dann bereichsweise an Rand- und Übergangsbedingungen anpassen. Die Bedeutung der gesuchten Auslenkung w und seiner Ableitungen sind

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ll} \ldots\text{ die Auslenkung: }&\displaystyle w_i(x) \\\ldots\text{ die Verdrehung: }&\displaystyle \phi_i(x) = \frac{d\,w_i(x)}{d\,x}\\ \ldots\text{ das Biege-Moment: }&\displaystyle M_i(x) = - E I \frac{d^2\,w_i(x)}{d\,x^2}\\ \ldots\text{ die Querkraft: }&\displaystyle Q_i(x) = - EI \frac{d^3\,w_i(x)}{d\,x^3} \end{array}}

Einfacher wird es, wenn wir mit der dimensionslosen Koordinate

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_i(x_i) = W_{ref} \cdot \tilde{w}_i(\xi)} .

arbeiten. Dann ist

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{cccl} E\,I & w_i^{IV}(x) &=& q_0 \\ E\,I & \displaystyle W_{ref} \; \frac{\partial^4}{\partial \xi^4} \tilde{w}_i (\xi) \cdot \frac{1}{\ell^4} &=& \displaystyle \frac{m\; g}{\ell}\\ \text{ und damit }& \displaystyle \frac{\partial^4}{\partial \xi^4} \tilde{w}_i (\xi) &=& \mu \text{ mit } \mu = \displaystyle \frac{q_0\, \ell^4}{EI}\, {W_{ref}} \end{array}}

Praktisch ist es nun, Wref so zu wählen, dass wir die dimensionslose Koordinate für w einfach interpretieren können. Aus der Musterlösung für den beidseitig gelenkig gelagerten Euler-Bernoulli-Balken unter konstanter Streckenlast nehmen wir

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_{ref} = \displaystyle \frac{5\,q_0\;\ell^4}{384\; EI}}

und damit

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu = \displaystyle \frac{384}{5}} .

Ein Aufintegrieren der Differentialgleichung liefert dann

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_i(x_i) = \displaystyle W_{ref}\, \left( \frac{\mu \, \xi^4}{24}+ \frac{C_{i,3} \, \xi^3}{6}+ \frac{C_{i,2} \, \xi^2}{2}+ C_{i,1}\, \xi+ C_{i,0} \right)}

Integration Of Differential Equation

Text


1+1




tmp

Für die 2*4 = 8 Integrationskonstanten

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[ C_{1,0},C_{1,1},C_{1,2},C_{1,3},C_{2,0},C_{2,1},C_{2,2},C_{2,3}\right]}

und die weiteren gesuchten Größen

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [F, B_z]}

suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen des Systems.

Die Normalkräfte N brauchen wir dabei nicht auszuwerten.

Rand A.

Aus Rand A:

Geometrische Randbedingungen

  1. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_1(0) = 0}
  2. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1(0) = 0}

Kraft- und Momenten-Randbedingungen

keine

Aus Übergang B:

Übergang B

Geometrische Randbedingungen

  1. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_1(a)=w_2(0)}
  2. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_1(a) = \phi_2(0)}

Kraft- und Momenten-Randbedingungen

  1. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -M_1(a) + M_2(0) = 0}
  2. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -Q_1(a) + B_z +Q_2(0) = 0} .

Aus Rand C:

Rand C

Geometrische Randbedingungen

  1. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_2(\ell-a)=d}

Kraft- und Momenten-Randbedingungen

  1. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle - M_2(\ell-a) = 0}
  2. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle - Q_2(\ell-a) - K = 0}

Gleichgewicht an der Führung

Führung

Für die starren Stäbe stellen wir die Summe aller Kräfte im senkrechten Stab auf:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \displaystyle F - B_z - k\;w_B = 0} .

Ein bisschen exotisch ist, dass wir nun zehn Unbekannte haben, nämlich

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{X} = \left(\begin{array}{c}C_{1,0}\\C_{1,1}\\C_{1,2}\\C_{1,3}\\C_{2,0}\\C_{2,1}\\C_{2,2}\\C_{2,3}\\F\\B_z \end{array}\right)}

Aber mit den Randbedingungen oben steht uns ein vollständiges Gleichungssystem für diese zehn Unbekannten - die Integrationskonstanten und die Kräfte F, Bz - zur Verfügung.

Auch hier arbeiten wir mit dimensionslosen Größen, hier

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} F &=& Q_{ref} \; \tilde{F}\\ B_z &=& Q_{ref} \; \tilde{B}_z\\ \end{array}} ,

wobei wir

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} Q_{ref} &=& \displaystyle \frac{3 \; EI}{\ell^3} \cdot W_{ref}\\ M_{ref} &=& Q_{ref} \; \ell \end{array}}

setzen.


Boundary Conditions

Text


1+1




tmp

Prepare for Solver

Text


1+1




tmp

Das Gleichungssystem wollen wir als

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{\underline{A}}\cdot\underline{X}= \underline{b}}

schreiben. Um die Ergebnisse kompakt darstellen zu können, wählen wir als Parameter

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} k &=& \gamma\; \frac{\displaystyle E\,I}{\displaystyle \ell^3},\\ K &=& \kappa\,Q_{ref},\\ d &=& \delta\;W_{ref} \end{array}}

mit den dimensionslosen Größen

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} \gamma &=& 5,\\ \kappa &=& 3,\\ \delta &=& 1 \end{array}} .

Damit erhalten wir - hier nach Einsetzen der System-Parameter:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 6 & 6 \alpha & 3 {{\alpha}^{2}} & {{\alpha}^{3}} & -6 & 0 & 0 & 0 & 0 & \frac{96 {{\alpha}^{4}}}{5}\\ 0 & 6 & 6 \alpha & 3 {{\alpha}^{2}} & 0 & -6 & 0 & 0 & 0 & \frac{384 {{\alpha}^{3}}}{5}\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & \frac{384 \alpha}{5}\\ 0 & 0 & 1 & \alpha & 0 & 0 & -1 & 0 & 0 & \frac{192 {{\alpha}^{2}}}{5}\\ 0 & 0 & 0 & 0 & 6 & 6 \beta & 3 {{\beta}^{2}} & {{\beta}^{3}} & 0 & \frac{96 {{\beta}^{4}}}{5}-6\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \frac{384 \beta}{5}-9\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \beta & 0 & \frac{192 {{\beta}^{2}}}{5}\\ 0 & 0 & 0 & 0 & -\frac{5}{3} & 0 & 0 & 0 & 1 & 0\end{pmatrix} \cdot \begin{pmatrix} {C_{1,0}}\\ {C_{1,1}}\\ {C_{1,2}}\\ {C_{1,3}}\\ {C_{2,0}}\\ {C_{2,1}}\\ {C_{2,2}}\\ {C_{2,3}}\\ {\tilde{F} }\\ {\tilde{B}_z} \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0\\ -3\\ 0\\ 0\\ 0\\ 0\\ 1\end{pmatrix}} .


Das Lösen des Gleichungssystems liefert dann

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{cl} {C_{1,0}}&=0,\\ {C_{1,1}}&=-\frac{49 {{\alpha}^{2}}-147 \alpha+56}{10},\\ {C_{1,2}}&=0,\\ {C_{1,3}}&=-\frac{339 \alpha-147}{5 \alpha},\\ {C_{2,0}}&=\frac{16 {{\alpha}^{4}}-81 {{\alpha}^{3}}+98 {{\alpha}^{2}}-28 \alpha}{5},\\ {C_{2,1}}&=\frac{64 {{\alpha}^{3}}-194 {{\alpha}^{2}}+147 \alpha-28}{5},\\ {C_{2,2}}&=\frac{192 {{\alpha}^{2}}-339 \alpha+147}{5},\\{C_{2,3}}&=\frac{384 \alpha-339}{5},\\ \tilde{F}&=\frac{80 {{\alpha}^{5}}-405 {{\alpha}^{4}}+490 {{\alpha}^{3}}-140 {{\alpha}^{2}}-147}{15 \alpha},\\ \tilde{B}_z&=-\frac{49}{5 \alpha} \end{array}}

und für

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha=\frac{1}{3}}

die dimensionslosen Werte

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\begin{array}{c} C_{1,0}\\C_{1,1}\\C_{1,2}\\C_{1,3}\\C_{2,0}\\C_{2,1}\\C_{2,2}\\C_{2,3}\\\tilde{F}\\\tilde{B}_z \end{array}\right) = \left(\begin{array}{c} +0\\ -\frac{56}{45}\\ +0\\ +\frac{102}{5}\\ -\frac{101}{405}\\ +\frac{49}{135}\\ +\frac{166}{15}\\ -\frac{211}{5}\\ -\frac{36226}{1215}\\ -\frac{147}{5}\\ \end{array} \right)} .

Ratio F/Q

Die Schaltkraft F ist negativ! Die Gewichtskraft des Balkens ist für die gewählte Konstellation zu groß, um die Kontaktkraft ohne F einzustellen. Wir schauen uns an, wie die erforderliche Kraft F über α verläuft:


Solving

Text


1+1




tmp

Die Grafen der gesuchten Funktionen tragen wir nun direkt dimensionslos auf:

... für w(x):

w(x)

... für ϕ(x):

phi(x)

... für M(x):

M(x)

... für Q(x):

Q(x)

... für die Lager-Reaktionskräfte:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ll} {A_z}=&\displaystyle -\frac{17\, m\, g}{64} \end{array}}

Post-Processing

Text


1+1






Links

  • ...

Literature

  • ...