Gelöste Aufgaben/Kig1: Unterschied zwischen den Versionen
Zeile 16: | Zeile 16: | ||
Damit der Schalter zuverlässig funktioniert soll die Kraft ''F'' an der Führung so gewählt werden, dass die vorgegebene Kontaktkraft ''K'' eingestellt wird.Gesucht ist die analytische Lösung für ein Euler-Bernoulli-Modell der elastischen Struktur. | Damit der Schalter zuverlässig funktioniert soll die Kraft ''F'' an der Führung so gewählt werden, dass die vorgegebene Kontaktkraft ''K'' eingestellt wird.Gesucht ist die analytische Lösung für ein Euler-Bernoulli-Modell der elastischen Struktur. | ||
</onlyinclude> | </onlyinclude> | ||
Wir lösen dazu das Gleichungssystem zur Bestimmung der Integrationskonstanten der Differentialgleichung des Euler-Bernoulli-Balkens und weiterer Unbekannten und geben die grafischen Lösungen für ''w, w', M'' und ''Q'' an. | |||
Gegeben: ''K'', ''ℓ, EI, m, g, k'' | |||
== Lösung mit Maxima == | == Lösung mit Maxima == |
Version vom 25. März 2021, 13:09 Uhr
Aufgabenstellung
Das skizzierte System ist ein elektrischer Schalter, der in C einen Stromkreis schließen soll. Es besteht aus einem durchgehenden elastischen Stab ABC (Euler-Bernoulli-Balken: Masse m, Biegesteifigkeit EI, Länge ℓ), der in A gelenkig gelagert ist, in B mit einer Führung aus drei starren, masselosen Stäben gelenkig verbunden ist und dem Kontakt in C. Die Führung ist durch eine Feder (Steifigkeit k) mit der Umgebung verbunden.
Damit der Schalter zuverlässig funktioniert soll die Kraft F an der Führung so gewählt werden, dass die vorgegebene Kontaktkraft K eingestellt wird.Gesucht ist die analytische Lösung für ein Euler-Bernoulli-Modell der elastischen Struktur.
Wir lösen dazu das Gleichungssystem zur Bestimmung der Integrationskonstanten der Differentialgleichung des Euler-Bernoulli-Balkens und weiterer Unbekannten und geben die grafischen Lösungen für w, w', M und Q an.
Gegeben: K, ℓ, EI, m, g, k
Lösung mit Maxima
Lorem Ipsum ....
tmp
Header
Text
1+1
tmp
Integration Of Differential Equation
Text
1+1
tmp
Boundary Conditions
Text
1+1
tmp
Prepare for Solver
Text
1+1
tmp
Solving
Text
1+1
tmp
Post-Processing
Text
1+1
Links
- ...
Literature
- ...