Gelöste Aufgaben/DGEC: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
[[Category:Gelöste_Aufgaben]] | |||
[[Category:Randwertproblem]] | [[Category:Randwertproblem]] | ||
[[Category:Timoshenko-Balken]] | [[Category:Timoshenko-Balken]] |
Version vom 23. Februar 2021, 12:27 Uhr
Aufgabenstellung
Wie sich die Balkenmodell von Euler-Bernoulli und Timoshenko in Ihrem Modellverhalten unterscheiden, untersuchen wir hier.

Ein Balken AB (Länge ℓ, Rechteck-Querschnitt h*b, Elastizitäts-Module E) ist in A fest eingespannt und in B durch eine Parallelführung gelagert.
In B wird er durch eine senkrechte Kraft F belastet.
Wir vergleichen die Auslenkung in B nach den Balken-Modellen von
Der Balken-Querschnitt sei rechteckig mit den Abmessungen h, b:
Hier gelte für den Querschnitt h=b.
Lösung mit Maxima
Header
Wir suchen Näherungslösungen für die Verschiebung des Punktes B mit dem Prinzip der virtuellen Verrückungen auf Basis der Bewegungsgleichungen aus DGEB. Dazu setzen wir einmal die Verschiebung und Verdrehung der Querschnitte jeweils nach dem Modell des
- Timoshenko-Balkens und
- Euler-Bernoulli-Balkens
an.
Parameter
Parameter sind
Trial-Functions
Wir wählen als Trial-Functions für die Auslenkung w und die Verdrehung ϕ des Timoshenko-Balkens:
- .
Beim Euler-Bernoulli-Balken ist
fest "eingebaut" - wir brauchen keine Trial-Funktion für ϕ.
Und so sehen die beiden Trial-Funtions aus:

Equilibrium-Conditions
Mit dem Prinzip der virtuellen Verrückungen lautet die Gleichgewichtsbedingung
- .
Aus DGEB wissen wir für die Virtuelle Formänderungsenergie
... für den Timoshenko-Balken | ... für den Euler-Bernoulli-Balken |
---|---|
Und die virtuelle Arbeit der äußeren Kraft F ist
Solving
Aus den Gleichgewichtsbedingungen erhalten wir die Gleichungen von
- W und Φ für den Timoshenko-Balken und
- W für den Euler-Bernoulli-Balken.
Timoshenko | Euler-Bernoulli |
---|---|
mit der Lösung> | |
Post-Processing
Einsetzen der Parameter liefert die Verschiebung des Punkte
- :
Wir sehen: für schlanke Balken bis α<0.2 können wir getrost mit der Euler-Bernoulli-Hypothese arbeiten - für "stäbigere" Balken brauchen wir mindestens das Timoshenko-Modell.

Links
- ...
Literature
- ...