Gelöste Aufgaben/FEAC: Unterschied zwischen den Versionen
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 7: | Zeile 7: | ||
<onlyinclude> | <onlyinclude> | ||
[[Datei:FEAA-01.png|75px|mini|Lageplan|alternativtext=]] | [[Datei:FEAA-01.png|75px|left|mini|Lageplan|alternativtext=]] | ||
Gesucht ist die analytische Lösung für die statische Auslenkung der beiden Massen. Wir arbeiten dabei mit dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip vom Minimum der Potentiellen Energie|Prinzip vom Minimum der Potentiellen Energie]]. | Gesucht ist die analytische Lösung für die statische Auslenkung der beiden Massen. Wir arbeiten dabei mit dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip vom Minimum der Potentiellen Energie|Prinzip vom Minimum der Potentiellen Energie]]. | ||
</onlyinclude> | </onlyinclude> | ||
Zeile 67: | Zeile 67: | ||
bzw. in Matrixform | bzw. in Matrixform | ||
::<math> | ::<math>\underline{\underline{A}}\cdot\begin{pmatrix}w_1\\w2\end{pmatrix} = \underline{b}</math> | ||
mit | mit | ||
::<math>\underline{\underline{A}}=k \begin{pmatrix} 2 & -1\\ -1 & 1\end{pmatrix},\underline{b}= m\cdot g \begin{pmatrix}1\\ 1\end{pmatrix}</math> | |||
Das Gleichungssystem hat sie Lösung (vgl. [[Sources/Lexikon/Minimum Prinzipe|Minimum Prinzipe]]) | |||
::<math>\displaystyle [{{w}_{1}}=\frac{2\cdot g\cdot m}{k},{{w}_{2}}=\frac{3\cdot g\cdot m}{k}]</math>. | ::<math>\displaystyle [{{w}_{1}}=\frac{2\cdot g\cdot m}{k},{{w}_{2}}=\frac{3\cdot g\cdot m}{k}]</math>. |
Aktuelle Version vom 9. März 2021, 11:17 Uhr
Aufgabenstellung
Hier berechnen wir die analytische Lösung zur Aufgabe FEAA.

Gesucht ist die analytische Lösung für die statische Auslenkung der beiden Massen. Wir arbeiten dabei mit dem Prinzip vom Minimum der Potentiellen Energie.
Lösung mit Maxima
Header

Als Koordinaten führen wir die Auslenkungen der Massen aus Ihrer Referenzlage ein, in der Referenzlage sind die Federn entspannt.
Equlibrium Conditions
Das Potential für das Aufstellen der Gleichgewichtsbeziehung lautet
- ,
wobei
Solving
Die Gleichgewichtsbeziehungen nach dem Prinzips vom Minimum der Potentiellen Energie
- .
liefern die Gleichungen
- .
bzw. in Matrixform
mit
Das Gleichungssystem hat sie Lösung (vgl. Minimum Prinzipe)
- .
Post-Procesing

Das dimensionslos-gemachte Potential U ist hier über w1 und w2 aufgetragen: man erkennt das Minimum des Potentials bei der berechneten Lösung.
Links
- ...
Literature
- ...