Als unabhängige Koordinaten eignen sich die <math>\underline{q}(t)</math> allerdings nicht: die Bedingung, dass die Euler-Achse ein Einheitsvektor sein muss, lässt sich nur sehr schwer in die Lösung eines [[Anfangswertprobleme|Anfangswertproblemes]] einbauen.
Als unabhängige Koordinaten eignen sich die <math>\underline{q}(t)</math> allerdings nicht: die Bedingung, dass die Euler-Achse ein Einheitsvektor sein muss, lässt sich nur sehr schwer in die Lösung eines [[Anfangswertprobleme|Anfangswertproblemes]] einbauen.
'''Links'''
# [[Gelöste Aufgaben/GYRQ]]
# [[Sources/Lexikon/Eulersche Winkel]]
# [[Sources/Lexikon/Kugelkoordinaten]]
Aktuelle Version vom 4. April 2022, 15:04 Uhr
Einheits-Quaternionen sind ein probates Werkzeug, um die räumliche Orientierung von Körpern zu beschreiben und räumliche Drehungen durchzuführen.
3D visualization einer Rotation bzgl. der Euler-Axe um den Winkel φ.
Dabei wird die Rotation durch einen Drehwinkel φ um eine Rotationsachse
abgebildet.
Als unabhängige Koordinaten eignen sich die allerdings nicht: die Bedingung, dass die Euler-Achse ein Einheitsvektor sein muss, lässt sich nur sehr schwer in die Lösung eines Anfangswertproblemes einbauen.
Cookies helfen uns bei der Bereitstellung von numpedia. Durch die Nutzung von numpedia erklärst du dich damit einverstanden, dass wir Cookies speichern.