Gelöste Aufgaben/UEBO: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 12: | Zeile 12: | ||
Der Euler-Bernoulli-Balken ''AB'' wird durch ein Moment ''M'' zwischen den beiden gelenkigen Lagern belastet. | Der Euler-Bernoulli-Balken ''AB'' wird durch ein Moment ''M'' zwischen den beiden gelenkigen Lagern belastet. | ||
<onlyinclude> | <onlyinclude> | ||
[[Datei:EBB-load-case-05.png|alternativtext=|links|200px|Lageplan]] | [[Datei:EBB-load-case-05.png|alternativtext=|mini|links|200px|Lageplan]] | ||
Gesucht ist eine Lösung für die Biegelinie mit dem [[Randwertprobleme/Methoden zur Lösung von Randwertproblemen/Verfahren von Rayleigh-Ritz (EBB)|Ansatz von Ritz]] und zwei Trial-Funktionen. | Gesucht ist eine Lösung für die Biegelinie mit dem [[Randwertprobleme/Methoden zur Lösung von Randwertproblemen/Verfahren von Rayleigh-Ritz (EBB)|Ansatz von Ritz]] und zwei Trial-Funktionen. | ||
Aktuelle Version vom 21. April 2021, 05:01 Uhr
Aufgabenstellung
Diese Problemstellung liefert einen Näherungsansatz für eine Standardlösung zum Euler-Bernoulli-Balken.
Der Euler-Bernoulli-Balken AB wird durch ein Moment M zwischen den beiden gelenkigen Lagern belastet.

Gesucht ist eine Lösung für die Biegelinie mit dem Ansatz von Ritz und zwei Trial-Funktionen.
(Weg "1" wie in UEBH beschrieben.)
Lösung mit Maxima
Beim Verfahren von Ritz arbeiten wir mit
- dem Prinzip vom Minimum der Potentiellen Energie und
- Ansatzfunktionen über die gesamte Länge des Balkens.
Header
Wir berechnen die Potentielle Energie U des Systems in Abhängigkeit von den generalisierten Koordinaten Wi und erhalten aus
die Gleichung für den gesuchten Koeffizienten Wi der Trial-Funktionen.
Declarations
Um die Lösung dimensionslos zu machen, nutzen wir die analytische Lösung des Problems , hier die Beträge der maximalen Auslenkung des Balkens für a = ℓ und der Verdrehung des Balkens am Momenten-Angriffspunkt für a = ℓ/2:
die maximale Auslenkung des Balkens für a=ℓ | |
die Verdrehung des Balkens am Momenten-Angriffspunkt für a=ℓ/2 |
Dimensionslose Orts-Koordinaten sind
- .
Formfunctions
Bei der Suche nach passenden Trial-Functions ϕ lassen wir uns ebenfalls von der analytischen Lösung des Problems "inspirieren":
Der Funktionsverlauf von wa hat zwei charakteristische Ausprägungen:
Und so wählen wir unsere Trial-Functions als
- .

Für α=7∙ℓ/10 sehen sie so aus;
Die Koeffizienten c1 und c2 haben wir dabei so gewählt, dass
- .
Mit den neuen, gesuchten Wichtungsfaktoren qw und qϕ ist die Ansatzfunktion zur Lösung mit dem Verfahren von Rayleigh-Ritz damit
Aufgrund der gewählten Skalierungsfaktoren erwarten wir als Ergebnis näherungsweise
- für α=½: qw ≈ 0 und qϕ ≈ 1,
- für α= 0: qw ≈ 1 und qϕ ≈ 0.
Potential Energy
Für die Gleichgewichtsbedingungen setzten wir Π (aus Abschnitt Euler-Bernoulli-Balken) und A in U ein und schreiben die skalare Gleichung allgemein in Matrizenform an. Dabei müssen wir
berücksichtigen und erhalten mit der Arbeitsfunktion des Moments
das Potential in Matrix-Schreibweise:
- .
wobei
- .
Einsetzen der Ansatzfunktion in die Formänderungsenergie und die Arbeitsfunktion liefert für die Matrizen A und b:
- ,
- .
Equilibrium Conditions
Diese Gleichung erfüllt die Gleichgewichtsbedingungen
- ,
wenn
- .
Solving
Auflösen der Gleichungen nach den unbekannten Koordinaten qw und qϕ liefert
- .
Damit ist die gesuchte Näherungs-Lösung
- .
Post-Processing

Die gesuchten Koordinaten qw und qΦ sind dimensionslos. Wir können sie direkt für verschiedene Werte von α auftragen.
Wir sehen:
- für α=½: die Lösung wird - wie erwartet - nur durch ϕ2 beschreiben - also qw ≈ 0 und qϕ ≈ 1; allerdings ist die Qualität der Lösung mit qϕ = 1/4 sehr schlecht - hier drückt der Sprung in der Momenten-Kennlinie der analytischen Lösung auf das Ergebnis (s.u.).
- für α= 0: die Lösung wird - wie erwartet - primär durch ϕ1 beschreiben, also qw ≈ 1 und qϕ ≈ 0. Hier zeigt die Lösung mit qw = 1.3 und qϕ = -0.5 einen recht großen Lösungs-Anteil der punktsymmetrischen Trial-Function.

Und so sieht die normierte Biegelinie des Balkens im Vergleich von Ritz-Näherung zu analytischer Lösung für verschiedene Werte von a aus:
Die dicken Linien gehören zu Näherung nach dem Ritz-Ansatz, die dünnen zur analytischen Lösung. Je weiter der Momenten-Angriffspunkt in die Balken-Mitte rückt und besonders für α=1/2 liefert der Ritz-Ansatz kein überzeugendes Ergebnis. Hier müssten wir mehr Trial-Functions "spendieren".

Post-Processing - Nachtrag
Wieso die Näherungslösung - besonders für α=½ - so schlecht ist, erkennt man beim Auftragen der Biegemomente im Stab für
- die analytische Lösung
- und
- die numerische Lösung
- .
Links
- ...
Literature
- ...