Sources/Lernvideos/T6C0: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: „n“)
 
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 1: Zeile 1:
n
[[Category:A*x=b]]
[[Category:Analytische Lösung]]
[[Category:Lernvideo]]
[[Category:Maxima‎]]
[[Category:Starrer Körper]]
[[Category:Statik]]
 
<onlyinclude>
Eine Einführung in
* "Freischneiden" und
* "Kräftegleichgewicht".
</onlyinclude>
 
[[Datei:T6C0.mp4|rand|mini|none|300px]]
 
{{MyCodeBlock|title= Maxima Sourcecode
|text=
Generiert das Gleichungssystem
 
::<math>\underline{\underline{A}}\cdot\underline{x}=b</math>
 
und löst es.
|code=
/* maxima file: solving for reation forces */
/* author: A.Baumgart@haw-hamburg.de      */
/* date: 2015-11-05                        */
/* ref: ELFE-T6C                          */
 
/* definition of equations and variables  */
equs : [N[2]*1/2*sqrt(2) - N[1]*1/2*sqrt(2) = 0,
        N[1]*1/2*sqrt(2) + N[2]*1/2*sqrt(2) - mg = 0,
      + sqrt(2)*a*N[2] + 2*a*B[y] - a*S = 0,
      - C[x] - S - N[2]*1/2*sqrt(2) = 0,
      - C[y] + B[y] - N[2]*1/2*sqrt(2) = 0,
      - sqrt(2)*a*N[2] - 2*a*A[y] + a*S + 2*a*A[x] = 0,
      + C[x] + S + N[1]*1/2*sqrt(2) + A[x] = 0,
      + C[y] + A[y] - N[1]*1/2*sqrt(2) = 0];
q: [N[1],N[2],A[x],A[y],C[x],C[y],B[y],S];
 
/* solves the system of linear equations for q */
sol[1] : solve(equs,q);
 
/* solves the problem in matrix-form: A.v=f */
/*                                    = - - */
 
M: augcoefmatrix (equs, q)$;
A : submatrix (M, 9);
f : - col(M,9);
sol[2]: linsolve_by_lu(A,f)[1]
 
/* EOF */
}}

Aktuelle Version vom 20. April 2021, 05:53 Uhr


Eine Einführung in

  • "Freischneiden" und
  • "Kräftegleichgewicht".


Maxima Sourcecode

Generiert das Gleichungssystem

und löst es.


/* maxima file: solving for reation forces */ /* author: A.Baumgart@haw-hamburg.de */ /* date: 2015-11-05 */ /* ref: ELFE-T6C */

/* definition of equations and variables */ equs : [N[2]*1/2*sqrt(2) - N[1]*1/2*sqrt(2) = 0,

       N[1]*1/2*sqrt(2) + N[2]*1/2*sqrt(2) - mg = 0,
     + sqrt(2)*a*N[2] + 2*a*B[y] - a*S = 0,
     - C[x] - S - N[2]*1/2*sqrt(2) = 0,
     - C[y] + B[y] - N[2]*1/2*sqrt(2) = 0,
     - sqrt(2)*a*N[2] - 2*a*A[y] + a*S + 2*a*A[x] = 0,
     + C[x] + S + N[1]*1/2*sqrt(2) + A[x] = 0,
     + C[y] + A[y] - N[1]*1/2*sqrt(2) = 0];

q: [N[1],N[2],A[x],A[y],C[x],C[y],B[y],S];

/* solves the system of linear equations for q */ sol[1] : solve(equs,q);

/* solves the problem in matrix-form: A.v=f */ /* = - - */

M: augcoefmatrix (equs, q)$; A : submatrix (M, 9); f : - col(M,9); sol[2]: linsolve_by_lu(A,f)[1]

/* EOF */